How to optimize dynamic programming?

Problem A number is called lucky if the sum of its digits, as well as the sum of the squares of its digits, is a prime number. How many numbers between A and B are successful?

Input: the first line contains the number of test cases T. Each of the following T lines contains two integers: A and B.

Output: output lines T, one for each case containing the required response for the corresponding case.

Limitations:
1 <= T <= 10000 & 1 <= A <= B <= 10 ^ 18

Input Example:

2

1 20

120 130

Output result:

4

1

Explanation: In the first case, the lucky numbers are 11, 12, 14, 16. For the second case, the only lucky number is 120.

The problem is quite simple if we use brute force, but the runtime is so critical that my program failed most of the test cases. My current idea is to use dynamic programming, storing the previous amount in a temporary array, for example:
sum_digits(10) = 1 -> sum_digits(11) = sum_digits(10) + 1
The same idea applies to the square of the sum, but the counter is odd numbers. Unfortunately, 9 out of 10 test cases still failed to complete, which is why I think there should be a better way to solve it. Any idea would be greatly appreciated.

 #include <iostream> #include <vector> #include <string> #include <algorithm> #include <unordered_map> #include <unordered_set> #include <cmath> #include <cassert> #include <bitset> using namespace std; bool prime_table[1540] = { 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 }; unsigned num_digits(long long i) { return i > 0 ? (long) log10 ((double) i) + 1 : 1; } void get_sum_and_sum_square_digits(long long n, int& sum, int& sum_square) { sum = 0; sum_square = 0; int digit; while (n) { digit = n % 10; sum += digit; sum_square += digit * digit; n /= 10; } } void init_digits(long long n, long long previous_sum[], const int size = 18) { int current_no_digits = num_digits(n); int digit; for (int i = 0; i < current_no_digits; ++i) { digit = n % 10; previous_sum[i] = digit; n /= 10; } for (int i = current_no_digits; i <= size; ++i) { previous_sum[i] = 0; } } void display_previous(long long previous[]) { for (int i = 0; i < 18; ++i) { cout << previous[i] << ","; } } int count_lucky_number(long long A, long long B) { long long n = A; long long end = B; int sum = 0; int sum_square = 0; int lucky_counter = 0; get_sum_and_sum_square_digits(n, sum, sum_square); long long sum_counter = sum; long long sum_square_counter = sum_square; if (prime_table[sum_counter] && prime_table[sum_square_counter]) { lucky_counter++; } long long previous_sum[19] = {1}; init_digits(n, previous_sum); while (n < end) { n++; if (n % 100000000000000000 == 0) { previous_sum[17]++; sum_counter = previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[16] = 0; previous_sum[15] = 0; previous_sum[14] = 0; previous_sum[13] = 0; previous_sum[12] = 0; previous_sum[11] = 0; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 10000000000000000 == 0) { previous_sum[16]++; sum_counter = previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[15] = 0; previous_sum[14] = 0; previous_sum[13] = 0; previous_sum[12] = 0; previous_sum[11] = 0; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 1000000000000000 == 0) { previous_sum[15]++; sum_counter = previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[14] = 0; previous_sum[13] = 0; previous_sum[12] = 0; previous_sum[11] = 0; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 100000000000000 == 0) { previous_sum[14]++; sum_counter = previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[13] = 0; previous_sum[12] = 0; previous_sum[11] = 0; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 10000000000000 == 0) { previous_sum[13]++; sum_counter = previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[12] = 0; previous_sum[11] = 0; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 1000000000000 == 0) { previous_sum[12]++; sum_counter = previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[11] = 0; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 100000000000 == 0) { previous_sum[11]++; sum_counter = previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[10] = 0; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 10000000000 == 0) { previous_sum[10]++; sum_counter = previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[9] = 0; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 1000000000 == 0) { previous_sum[9]++; sum_counter = previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[8] = 0; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 100000000 == 0) { previous_sum[8]++; sum_counter = previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[7] = 0; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 10000000 == 0) { previous_sum[7]++; sum_counter = previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[6] = 0; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 1000000 == 0) { previous_sum[6]++; sum_counter = previous_sum[6] + previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[6] * previous_sum[6] + previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[5] = 0; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 100000 == 0) { previous_sum[5]++; sum_counter = previous_sum[5] + previous_sum[6] + previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[5] * previous_sum[5] + previous_sum[6] * previous_sum[6] + previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[4] = 0; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 10000 == 0) { previous_sum[4]++; sum_counter = previous_sum[4] + previous_sum[5] + previous_sum[6] + previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[4] * previous_sum[4] + previous_sum[5] * previous_sum[5] + previous_sum[6] * previous_sum[6] + previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[3] = 0; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 1000 == 0) { previous_sum[3]++; sum_counter = previous_sum[3] + previous_sum[4] + previous_sum[5] + previous_sum[6] + previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[3] * previous_sum[3] + previous_sum[4] * previous_sum[4] + previous_sum[5] * previous_sum[5] + previous_sum[6] * previous_sum[6] + previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[2] = 0; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 100 == 0) { previous_sum[2]++; sum_counter = previous_sum[2] + previous_sum[3] + previous_sum[4] + previous_sum[5] + previous_sum[6] + previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[2] * previous_sum[2] + previous_sum[3] * previous_sum[3] + previous_sum[4] * previous_sum[4] + previous_sum[5] * previous_sum[5] + previous_sum[6] * previous_sum[6] + previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[1] = 0; previous_sum[0] = 0; } else if (n % 10 == 0) { previous_sum[1]++; sum_counter = previous_sum[1] + previous_sum[2] + previous_sum[3] + previous_sum[4] + previous_sum[5] + previous_sum[6] + previous_sum[7] + previous_sum[8] + previous_sum[9] + previous_sum[10] + previous_sum[11] + previous_sum[12] + previous_sum[13] + previous_sum[14] + previous_sum[15] + previous_sum[16] + previous_sum[17] + previous_sum[18]; sum_square_counter = previous_sum[1] * previous_sum[1] + previous_sum[2] * previous_sum[2] + previous_sum[3] * previous_sum[3] + previous_sum[4] * previous_sum[4] + previous_sum[5] * previous_sum[5] + previous_sum[6] * previous_sum[6] + previous_sum[7] * previous_sum[7] + previous_sum[8] * previous_sum[8] + previous_sum[9] * previous_sum[9] + previous_sum[10] * previous_sum[10] + previous_sum[11] * previous_sum[11] + previous_sum[12] * previous_sum[12] + previous_sum[13] * previous_sum[13] + previous_sum[14] * previous_sum[14] + previous_sum[15] * previous_sum[15] + previous_sum[16] * previous_sum[16] + previous_sum[17] * previous_sum[17] + previous_sum[18] * previous_sum[18]; previous_sum[0] = 0; } else { sum_counter++; sum_square_counter += ((n - 1) % 10) * 2 + 1; } // get_sum_and_sum_square_digits(n, sum, sum_square); // assert(sum == sum_counter && sum_square == sum_square_counter); if (prime_table[sum_counter] && prime_table[sum_square_counter]) { lucky_counter++; } } return lucky_counter; } void inout_lucky_numbers() { int n; cin >> n; long long a; long long b; while (n--) { cin >> a >> b; cout << count_lucky_number(a, b) << endl; } } int main() { inout_lucky_numbers(); return 0; } 
+4
source share
2 answers

Seeing that AB can be a range of 10 ^ 18, you can't loop from A to B on time, no matter how optimized it is. Let's try to figure out how to do this, which is not specifically related to all these numbers ...

First, let me reduce the problem to finding lucky numbers between 1 and E and call it lucky (E). The answer to the general problem is just lucky (B) -lucky (A-1).

Now let me build such a lucky digit by digit. Suppose we have already placed several digits on this number and should continue. Does it matter which numbers we have already posted? Not! We only need to know the following:

  • How many digits were posted (n)
  • Current sum of digits (digits)
  • Current sum of squares of digits (sq)

This will be what is called in dynamic programming as our state.

Leave the neglect of 10 ^ 18 as it is the only input number with 19 digits and it is out of luck. Note that E can have up to 18 digits, so we have 19 possibilities for n (from 0 to 18), 162 (18 * 9 + 1) possibilities for s, and 1459 (18 * 81 + 1) possibilities for sq. leaves us with a search space of no more than 5 million, which is incredibly less than a search for 10 ^ 18 numbers for matches.

So, let's define F (n, s, sq) as "in how many ways can we add numbers to a number that has such properties to get a lucky number" (thanks to the rewriting kit). The main case is when n is equal to the number of digits in E: F (N, s, s_sq) is 1 if s and sq are prime, 0 otherwise. For other possibilities, make possible transitions and call F recursively, trying to prevent the number you are building from passing E.

Thus, we can define lucky (E) as F (0, 0, 0).

When you are done, remember to remember the function for the inputs / outputs already calculated.

Edit: This is a bit outdated, but here is an example of implementing a successful function, which I believe is correct. Note that n goes in the code as opposed to the explanation above, since it is much easier to code in this way.

 long long dp[20][163][1460]; bool calc[20][163][1460]; int digits[20]; int digit_cnt; // The last argument (eq) is used to avoid going over E long long F(int n, int s, int sq, bool eq) { // Base cases if (!eq && calc[n][s][sq]) return dp[n][s][sq]; if (n == 0) return (prime_table[s] && prime_table[sq]); long long resp = 0; // Test all possibilities for the next digit for (int d = 0; d < 10; d++) { if (!eq || digits[n-1] > d) { resp += F(n-1, s+d, sq + d*d, false); } // If the number formed so far is exactly equal to E // we will go over E if we pick a larger // digit than digits[n-1]. // So we have to take care if eq == true else if (digits[n-1] == d) { resp += F(n-1, s+d, sq + d*d, true); } else break; } // Note that computations that have eq set to true // can't be used in other calculations of F(), as they depend on E. if (!eq) { calc[n][s][sq] = true; dp[n][s][sq] = resp; } return resp; } long long lucky(long long E) { long long tE = E; digit_cnt = 0; while (tE) { digits[digit_cnt++] = tE % 10; tE /= 10; } return F(digit_cnt, 0, 0, true); } 
+7
source

Verifying that the number is prime is very simple, the top number you will ever come across is 1458 (for the number 999,999,999,999,999,999). I think you have prime_table , which is good. Therefore, searching if a particular number is simple cannot be faster. I think that you should definitely use the prime table that you have, although it would be better if you calculated it at the beginning of the program, instead of hard coding - there is less chance of an error.

There are other caches that you can create. You need to go through all the numbers and sum them up and their squares. But no one said you should iterate over the numbers one by one. You can switch to 5 digits at once - all you need is two arrays with 1,000,000 cells, one of which contains the sum of digits and a digit containing the sum of squares.

So, you have an array for primes, an array for the sum of digits for all 6-digit numbers and an array for the sum of squares of digits for all 6-digit numbers. Getting a solution for any 18-digit number will be very simple - you have 2 modulu operations, 2 units, 4 additions and 7 search queries. You cannot get much faster than that.

Note. Play with the number 1,000,000. 100,000 might be faster if your L1 cache is small, although I believe that you are still fine with 1,000,000 - you have about 2 MB of data that you continue to receive that should fit tightly inside your L1 cache .

+2
source

All Articles