Package tables
library(tables) tabular( (Species + 1) ~ All(iris)*(mean),data=iris) > tabular( (Species + 1) ~ All(iris)*(mean),data=iris) Sepal.Length Sepal.Width Petal.Length Petal.Width Species mean mean mean mean setosa 5.006 3.428 1.462 0.246 versicolor 5.936 2.770 4.260 1.326 virginica 6.588 2.974 5.552 2.026 All 5.843 3.057 3.758 1.199
but I cheated and made a small copy, for example, in the help files;) so the loan is Duncan Murdoch.
or in sqldf
library(sqldf)
Library (sqldf)
sqldf(" select Species, avg(Sepal_Length) `Sepal.Length`, avg(Sepal_Width) `Sepal.Width`, avg(Petal_Length) `Petal.Length`, avg(Petal_Width) `Petal.Width` from iris group by Species union all select 'All', avg(Sepal_Length) `Sepal.Length`, avg(Sepal_Width) `Sepal.Width`, avg(Petal_Length) `Petal.Length`, avg(Petal_Width) `Petal.Width` from iris" )
which can be written a little more compactly as follows:
variables <- "avg(Sepal_Length) `Sepal.Length`, avg(Sepal_Width) `Sepal.Width`, avg(Petal_Length) `Petal.Length`, avg(Petal_Width) `Petal.Width`" fn$sqldf(" select Species, $variables from iris group by Species union all select 'All', $variables from iris")
gives
Species Sepal.Length Sepal.Width Petal.Length Petal.Width 1 setosa 5.006000 3.428000 1.462 0.246000 2 versicolor 5.936000 2.770000 4.260 1.326000 3 virginica 6.588000 2.974000 5.552 2.026000 4 All 5.843333 3.057333 3.758 1.199333
source share