The data.table package data.table great for this kind of material.
First download the package and create some data.
library(data.table) set.seed(1) dat <- data.table(Species = paste("s", sample(1:3, 15, replace = TRUE), sep = ""), BA = rnorm(15), CA = rnorm(15), DA = rnorm(15), EA = rnorm(15), key="Species") dat # Species BA CA DA EA # 1: s1 -0.005767173 0.80418951 1.2383041 -0.79533912 # 2: s1 -1.147657009 -0.69095384 -0.4527840 -0.17262350 # 3: s1 -0.891921127 -0.43331032 1.1565370 -0.94064916 # 4: s1 0.435683299 -0.64947165 0.8320471 -0.11582532 # 5: s1 -1.237538422 0.72675075 -0.2273287 -0.81496871 # 6: s2 2.404653389 -0.05710677 -0.2793463 -0.05487747 # 7: s2 0.763593461 0.50360797 1.7579031 0.25014132 # 8: s2 -0.411510833 -0.23570656 -1.0655906 0.35872890 # 9: s2 0.252223448 -0.54288826 -1.5637821 -0.01104548 # 10: s2 0.377395646 0.99216037 -0.3767027 -1.42509839 # 11: s3 -0.799009249 1.08576936 0.5607461 0.61824329 # 12: s3 -0.289461574 -1.28459935 -0.8320433 -2.22390027 # 13: s3 -0.299215118 0.04672617 -1.1665705 -1.26361438 # 14: s3 -0.224267885 1.15191175 0.2661374 0.24226348 # 15: s3 0.133336361 -0.42951311 2.4413646 0.36594112
Note. If you already have data.frame (which I assume you are doing), you can simply use data.table(YourDataFrame, key=YourGroupingColumns)
Here is the actual aggregation. .SD is a subset of the columns of your data. By default, all columns in your data exclude key (your grouping column, in this case we specified โViewsโ as our key).
dat[, lapply(.SD, sum), by=key(dat)] # Species BA CA DA EA # 1: s1 -2.847200 -0.2427955 2.546776 -2.8394058 # 2: s2 3.386355 0.6600668 -1.527519 -0.8821511 # 3: s3 -1.478617 0.5702948 1.269634 -2.2610668
However, there is also the .SDcols argument, which allows you to specify which columns you are interested in either by name or by numerical index.
dat[, lapply(.SD, sum), by=key(dat), .SDcols = "DA"] # Species DA # 1: s1 2.546776 # 2: s2 -1.527519 # 3: s3 1.269634 dat[, lapply(.SD, sum), by=key(dat), .SDcols = 2:3] # Species BA CA # 1: s1 -2.847200 -0.2427955 # 2: s2 3.386355 0.6600668 # 3: s3 -1.478617 0.5702948 # or perhaps, more easily understood. dat[, lapply(.SD, sum), by=key(dat), .SDcols = c('BA','CA')] # Species BA CA # 1: s1 -2.847200 -0.2427955 # 2: s2 3.386355 0.6600668 # 3: s3 -1.478617 0.5702948