Reading data:
dat <- read.table(textConnection( "Age Brass_Standard Sweden Italy Japan 1 1 85.0 98.7 84.8 96.4 2 5 76.9 98.4 73.9 95.2 3 10 75.0 98.2 72.1 94.7 4 20 71.3 97.9 69.9 93.8 5 30 65.2 97.4 64.1 91.7 "))
Receive packages:
library(ggplot2) library(scales) library(reshape2)
Percentage of scaling to proportions:
dat[,-1] <- dat[,-1]/100
Change the data:
mdat <- melt(dat,id.var="Age")
Schedule all variables (including Brass_Standard ) by age, with the y axis being converted to a logit scale with linear regression readings:
qplot(Age,value,data=mdat,colour=variable)+ scale_y_continuous(trans=logit_trans())+ geom_smooth(method="lm")+theme_bw() ggsave("logitplot1.png")

Change the data a little differently:
mdat2 <- melt(dat,id.var=c("Age","Brass_Standard"))
Graph data instead of Brass_Standard , not vs. Age : convert x and y to logit scales and add linear regression again.
qplot(Brass_Standard,value,data=mdat2,colour=variable)+ scale_y_continuous(trans=logit_trans())+ scale_x_continuous(trans=logit_trans())+ geom_smooth(method="lm")+ theme_bw() ggsave("logitplot2.png")

If you need to get the coefficients of these settings, I would suggest something like:
library(nlme) pdat <- with(mdat2,data.frame(Age,variable, logit_Brass_Standard=plogis(Brass_Standard), logit_value=plogis(value))) fit1 <- lmList(logit_Brass_Standard~logit_value|variable,data=pdat) coef(fit1)
http://www.demog.berkeley.edu/~eddieh/toolbox.html#BrassMortality looks like this might be useful too.
(I hope I will not do my homework for you ...)