How can I generate CMAC-AES in javascript

I am trying to use the Stanford Javascript scripting library to create a CMAC-AES token for OAuth 2.0 approval, but I'm far from a cryptography specialist. Can someone give an example using sjcl or any open source licensed js library? I'm not even sure if this is possible using existing sjcl functions.

I tried using the options object, as I saw in this question , but I don’t understand what modes or other options, and I could not find any documentation on this. I believe that salt and iv (in order to be reproducible MAC) should have been static, but I don't know what values ​​they should be.

// is there a way that works? var token = sjcl.encrypt(secret,assertion,{salt:foo,iv:bar}); 

A bit of background ... this is for rewriting native mobile applications (iOS and android) into one hybrid application (Cordova, HTML, CSS and JavaScript), and I would like to save as much code as possible in JavaScript. This will not work in a "unsafe" browser environment, but rather in its own WebView. If you know about other security issues, I would like to hear them.

Otherwise, I think I will have to write a plug-in for transferring CMAC from embedded implementations.

Remember, I also use Dojo, and I know dojox.encoding.crypto, but the problem is the same for me. Not sure if he can do CMAC or how many changes it will take to get it to work.

+4
source share
2 answers

It took too much time this weekend, and I finally got his job. It's amazing how many places can go wrong. This is an AMD dojo module, so it can be easily downloaded using "require". Usage is demonstrated by the test vectors that follow (ignore subsection tests under normal use). One quirk: make sure you pass the key and messages as hex encoded strings. I plan to make it a little friendlier and accept utf8String encoded strings as well, but with sjcl.codec it's pretty easy to do it yourself.

I would appreciate any feedback, especially for the fill function and my use of bitArray methods.

 // in crypto/AesCmac.js define([ "dojo/_base/declare" ], function(declare) { return declare(null, { /** * This mostly follows the AES-128 CMAC algorithm found here. * * @see http://tools.ietf.org/html/rfc4493 * * * This module has a dependency on The Stanford Javascript Crypto Library. If using the * minified build, be sure to add sjcl.mode.cbc object into the namespace since I guess it's * too "dangerous" to include. * * @see http://crypto.stanford.edu/sjcl/ * * * In JavaScript, all numbers are 64 bit floating point. The bitwise operators treat numbers * as 32bit integers. But we're not guaranteed all 32 bits. ~0=-1 instead of 4,294,967,295. * So for most of these bit operations we're using sjcl.bitArray to do the dirty work. * * @see http://www.hunlock.com/blogs/The_Complete_Javascript_Number_Reference * * * The padding function is described here. * @see http://www.cardwerk.com/smartcards/smartcard_standard_ISO7816-4_5_basic_organizations.aspx#chap5_6_3_1 */ const_Bsize : 128, // in bits! not octets (16) const_Zero : sjcl.codec.hex.toBits("0x00000000000000000000000000000000"), const_Rb : sjcl.codec.hex.toBits("0x00000000000000000000000000000087"), aesCipher : {}, init : function(key) { var keyBits = sjcl.codec.hex.toBits(key); this.aesCipher = new sjcl.cipher.aes(keyBits); }, xor4Words : function(x, y) { return [ x[0] ^ y[0], x[1] ^ y[1], x[2] ^ y[2], x[3] ^ y[3] ]; }, simpleShiftLeft : function(a, shift) { return sjcl.bitArray.bitSlice(sjcl.bitArray.concat(a, [ 0 ]), shift, this.const_Bsize + shift); }, iso7816d4Padding : function(m) { var bitLength = sjcl.bitArray.bitLength(m); m = this.xor4Words(m, this.const_Zero); var gap = this.const_Bsize - bitLength; if (gap < 8) return m; var startWord = Math.floor(bitLength / 32); var startByte = Math.ceil((bitLength % 32) / 8); // 0,1,2,3,4 if (startByte == 4) { console.log("rolled over into next word"); startWord++; startByte = 0; if (startWord == 4) { // this should have been caught above on gap check console.warn("this shouldn't ever happen"); return m; } } var last32 = m[startWord]; // startByte: 0->2^31, 1->2^23, 2->2^15, 3->2^7 var bitmask = Math.pow(2, (4 - startByte) * 8 - 1) last32 |= bitmask; m[startWord] = last32; return m; }, _encrypt : function(m) { return sjcl.bitArray.clamp(sjcl.mode.cbc.encrypt(this.aesCipher, m, this.const_Zero), this.const_Bsize); }, generateSubkeys : function() { // Step 1 var L = this._encrypt(this.const_Zero); // Step 2 var msbNeg = L[0] & 0x80000000; var K1 = this.simpleShiftLeft(L, 1, 0); if (msbNeg) { K1 = this.xor4Words(K1, this.const_Rb); } // Step 3 msbNeg = K1[0] & 0x80000000; var K2 = this.simpleShiftLeft(K1, 1, 0); if (msbNeg) { K2 = this.xor4Words(K2, this.const_Rb); } // Step 4 return { "K1" : K1, "K2" : K2 }; }, generateCmac : function(plainText) { // Step 1 var subkeys = this.generateSubkeys(); // Step 2 var M = sjcl.codec.hex.toBits(plainText); var len = sjcl.bitArray.bitLength(M); // in bits! not octets var n = Math.ceil(len / this.const_Bsize); // Step 3 var lastBlockComplete; if (n == 0) { n = 1; lastBlockComplete = false; } else { if (len % this.const_Bsize == 0) lastBlockComplete = true; else lastBlockComplete = false; } // Step 4 var lastStart = (n - 1) * this.const_Bsize; var M_last = sjcl.bitArray.bitSlice(M, lastStart); if (lastBlockComplete) { M_last = this.xor4Words(M_last, subkeys["K1"]); } else { M_last = this.iso7816d4Padding(M_last); M_last = this.xor4Words(M_last, subkeys["K2"]); } // Step 5 var X = this.const_Zero; var Y; // Step 6 for ( var i = 1; i <= n - 1; i++) { var start = (i - 1) * this.const_Bsize; var end = i * this.const_Bsize; var M_i = sjcl.bitArray.bitSlice(M, start, end); Y = this.xor4Words(X, M_i); X = this._encrypt(Y); } Y = this.xor4Words(M_last, X); // Step 7 return this._encrypt(Y); } }); }); 

Here are the test vectors

 function testAesCmac() { /** * <pre> * Subkey Generation * K 2b7e1516 28aed2a6 abf71588 09cf4f3c * AES-128(key,0) 7df76b0c 1ab899b3 3e42f047 b91b546f * K1 fbeed618 35713366 7c85e08f 7236a8de * K2 f7ddac30 6ae266cc f90bc11e e46d513b * </pre> */ var AesCmac = require("crypto/AesCmac"); var cmac = new AesCmac(); cmac.init("0x2b7e151628aed2a6abf7158809cf4f3c"); // Test AES-128 on zero initialization vector var t_0 = cmac._encrypt(cmac.const_Zero); var aes_0 = sjcl.codec.hex.toBits("0x7df76b0c1ab899b33e42f047b91b546f"); sjcl.bitArray.equal(t_0, aes_0) ? console.log("AES test passed!") : console .error("AES test failed!"); // Test subkey equality var subkeys = cmac.generateSubkeys(); var K1 = sjcl.codec.hex.toBits("0xfbeed618357133667c85e08f7236a8de"); sjcl.bitArray.equal(subkeys["K1"], K1) ? console.log("K1 test passed!") : console .error("K1 test failed!"); var K2 = sjcl.codec.hex.toBits("0xf7ddac306ae266ccf90bc11ee46d513b"); sjcl.bitArray.equal(subkeys["K2"], K2) ? console.log("K2 test passed!") : console .error("K2 test failed!"); /** * <pre> * Example 1: len = 0 * M &lt;empty string&gt; * AES-CMAC bb1d6929 e9593728 7fa37d12 9b756746 * </pre> */ var m1 = ""; var cmac1 = cmac.generateCmac(m1); var ex1 = sjcl.codec.hex.toBits("0xbb1d6929e95937287fa37d129b756746") sjcl.bitArray.equal(ex1, cmac1) ? console.log("cmac1 test passed!") : console .error("cmac1 test failed!"); if (sjcl.codec.hex.fromBits(cmac1) !== "bb1d6929e95937287fa37d129b756746") console.error(sjcl.codec.hex.fromBits(cmac1) + " !== bb1d6929e95937287fa37d129b756746"); /** * <pre> * Example 2: len = 16 * M 6bc1bee2 2e409f96 e93d7e11 7393172a * AES-CMAC 070a16b4 6b4d4144 f79bdd9d d04a287c * </pre> */ var m2 = "0x6bc1bee22e409f96e93d7e117393172a"; var cmac2 = cmac.generateCmac(m2); var ex2 = sjcl.codec.hex.toBits("0x070a16b46b4d4144f79bdd9dd04a287c") sjcl.bitArray.equal(ex2, cmac2) ? console.log("cmac2 test passed!") : console .error("cmac2 test failed!"); /** * <pre> * Example 3: len = 40 * M 6bc1bee2 2e409f96 e93d7e11 7393172a * ae2d8a57 1e03ac9c 9eb76fac 45af8e51 * 30c81c46 a35ce411 * AES-CMAC dfa66747 de9ae630 30ca3261 1497c827 * </pre> */ var m3 = "0x6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411"; var cmac3 = cmac.generateCmac(m3); var ex3 = sjcl.codec.hex.toBits("0xdfa66747de9ae63030ca32611497c827") sjcl.bitArray.equal(ex3, cmac3) ? console.log("cmac3 test passed!") : console .error("cmac3 test failed!"); /** * <pre> * Example 4: len = 64 * M 6bc1bee2 2e409f96 e93d7e11 7393172a * ae2d8a57 1e03ac9c 9eb76fac 45af8e51 * 30c81c46 a35ce411 e5fbc119 1a0a52ef * f69f2445 df4f9b17 ad2b417b e66c3710 * AES-CMAC 51f0bebf 7e3b9d92 fc497417 79363cfe * </pre> */ var m4 = "0x6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51" + "30c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710"; var cmac4 = cmac.generateCmac(m4); var ex4 = sjcl.codec.hex.toBits("0x51f0bebf7e3b9d92fc49741779363cfe") sjcl.bitArray.equal(ex4, cmac4) ? console.log("cmac4 test passed!") : console .error("cmac4 test failed!"); } 
+4
source

You could take a look at it and implement it yourself. CMAC deployment should be performed if you are working with an encrypted AES unit. The hardest part is probably that you use real bytes instead of any other type inside JavaScript.

AES CMAC is NIST approved, so you can test the testing factors .

+3
source

All Articles