Base R
Here are two methods from base R.
The first uses cut , split and lapply along with summary .
creekFlowSummary <- lapply(split(creek, cut(creek$date, "1 year")), function(x) summary(x[2]))
This creates a list . You can view a summary of different years by referring to the appropriate list or list name.
creekFlowSummary[1] # $`1999-01-01` # flow # Min. :0.3187 # 1st Qu.:0.3965 # Median :0.4769 # Mean :0.6366 # 3rd Qu.:0.5885 # Max. :7.2560 # creekFlowSummary["2000-01-01"] # $`2000-01-01` # flow # Min. :0.1370 # 1st Qu.:0.1675 # Median :0.2081 # Mean :0.2819 # 3rd Qu.:0.2837 # Max. :2.3800
The second uses aggregate :
aggregate(flow ~ cut(date, "1 year"), creek, summary) # cut(date, "1 year") flow.Min. flow.1st Qu. flow.Median flow.Mean flow.3rd Qu. flow.Max. # 1 1999-01-01 0.3187 0.3965 0.4770 0.6366 0.5885 7.2560 # 2 2000-01-01 0.1370 0.1675 0.2081 0.2819 0.2837 2.3800 # 3 2001-01-01 0.1769 0.2062 0.2226 0.2950 0.2574 2.9220 # 4 2002-01-01 0.1279 0.1781 0.2119 0.5346 0.4966 14.3900 # 5 2003-01-01 0.3492 0.4761 0.7173 1.0350 1.0840 10.1500 # 6 2004-01-01 0.4178 0.5379 0.6524 0.9691 0.9020 11.7100 # 7 2005-01-01 0.4722 0.6094 0.7279 1.2340 1.0900 17.7200 # 8 2006-01-01 0.2651 0.3275 0.4282 0.5459 0.5758 3.3510 # 9 2007-01-01 0.2784 0.3557 0.4041 0.6331 0.6125 9.6290 # 10 2008-01-01 0.4131 0.5430 0.6477 0.8792 0.9540 4.5960 # 11 2009-01-01 0.3877 0.4572 0.5945 0.8465 0.8309 6.3830
Be careful with the aggregate solution, though: All summary information is a single matrix. Check out the str output to see what I mean.
xts
There are, of course, other ways to do this. One way is to use the xts package.
Convert your data to xts :
library(xts) creekx <- xts(creek$flow, order.by=creek$date)
Then use apply.yearly and any functions that interest you.
Below is the average of the year:
apply.yearly(creekx, mean) # [,1] # 1999-12-31 0.6365604 # 2000-12-31 0.2819057 # 2001-12-31 0.2950348 # 2002-12-31 0.5345666 # 2003-12-31 1.0351742 # 2004-12-31 0.9691180 # 2005-12-31 1.2338066 # 2006-12-31 0.5458652 # 2007-12-31 0.6331271 # 2008-12-31 0.8792396 # 2009-09-30 0.8465300
And the annual maximum:
apply.yearly(creekx, max) # [,1] # 1999-12-31 7.256 # 2000-12-31 2.380 # 2001-12-31 2.922 # 2002-12-31 14.390 # 2003-12-31 10.150 # 2004-12-31 11.710 # 2005-12-31 17.720 # 2006-12-31 3.351 # 2007-12-31 9.629 # 2008-12-31 4.596 # 2009-09-30 6.383
Or, connect them as follows: apply.yearly(creekx, function(x) cbind(mean(x), sum(x), max(x)))
data.table
The data.table package data.table also be of interest to you, especially if you are dealing with a lot of data. Here is a data.table . The key is to use as.IDate in the "date" column when you read your data:
library(data.table) DT <- data.table(date = as.IDate(creek$date), creek[-1]) DT[, list(mean = mean(flow), tot = sum(flow), max = max(flow)), by = year(date)] # year mean tot max # 1: 1999 0.6365604 104.3959 7.256 # 2: 2000 0.2819057 103.1775 2.380 # 3: 2001 0.2950348 107.6877 2.922 # 4: 2002 0.5345666 195.1168 14.390 # 5: 2003 1.0351742 377.8386 10.150 # 6: 2004 0.9691180 354.6972 11.710 # 7: 2005 1.2338066 450.3394 17.720 # 8: 2006 0.5458652 199.2408 3.351 # 9: 2007 0.6331271 231.0914 9.629 # 10: 2008 0.8792396 321.8017 4.596 # 11: 2009 0.8465300 231.1027 6.383