How to download converted LDA package from python gensim ? What I tried:
from gensim import corpora, models import numpy.random numpy.random.seed(10) doc0 = [(0, 1), (1, 1)] doc1 = [(0,1)] doc2 = [(0, 1), (1, 1)] doc3 = [(0, 3), (1, 1)] corpus = [doc0,doc1,doc2,doc3] dictionary = corpora.Dictionary(corpus) tfidf = models.TfidfModel(corpus) corpus_tfidf = tfidf[corpus] corpus_tfidf.save('x.corpus_tfidf')
The above code outputs:
[(0, 0.54259038344543631), (1, 0.45740961655456358)] [(0, 1), (1, 1)] [(0, 0.56718063124157458), (1, 0.43281936875842542)] [(0, 1)] [(0, 0.54255407573666647), (1, 0.45744592426333358)] [(0, 1), (1, 1)] [(0, 0.75229707773868093), (1, 0.2477029222613191)] [(0, 3), (1, 1)] # [(<topic_number_from x.corpus_lda model>, # <probability of this topic for this document>), # (<topic# from lda model>, <prob of this top for this doc>)] [<document[i] from corpus>]
If I want to load a saved converted LDA body, which class from gensim should I use to load it?
I tried using corpora.MmCorpus.load() , it does not give me the same result of the converted case, as shown above:
>>> lda_corpus = corpora.MmCorpus.load('x.corpus_lda') >>> for i,j in enumerate(lda_corpus): ... print j, corpus[i] ... [(0, 0.55087839240547309), (1, 0.44912160759452685)] [(0, 1), (1, 1)] [(0, 0.56715974584850259), (1, 0.43284025415149735)] [(0, 1)] [(0, 0.54275680271070581), (1, 0.45724319728929413)] [(0, 1), (1, 1)] [(0, 0.75233330695720912), (1, 0.24766669304279079)] [(0, 3), (1, 1)]