I am trying to calculate the rms prediction error y_train_actual
from my sci-kit training model with initial salaries
.
Problem: However, with mean_squared_error(y_train_actual, salaries)
I get the error TypeError: unsupported operand type(s) for -: 'numpy.ndarray' and 'numpy.ndarray'
. Using list(salaries)
instead of salaries
, as the second parameter gives the same error.
With mean_squared_error(y_train_actual, y_valid_actual)
I get the error Found array with dim 40663. Expected 244768
How can I convert to the correct array types for sklearn.netrucs.mean_squared_error()
?
code
from sklearn.metrics import mean_squared_error y_train_actual = [ np.exp(float(row)) for row in y_train ] print mean_squared_error(y_train_actual, salaries)
Error
TypeError Traceback (most recent call last) <ipython-input-144-b6d4557ba9c5> in <module>() 3 y_valid_actual = [ np.exp(float(row)) for row in y_valid ] 4
code
y_train_actual = [ np.exp(float(row)) for row in y_train ] y_valid_actual = [ np.exp(float(row)) for row in y_valid ] print mean_squared_error(y_train_actual, y_valid_actual)
Error
ValueError Traceback (most recent call last) <ipython-input-146-7fcd0367c6f1> in <module>() 4 5 #print mean_squared_error(y_train_actual, salaries) ----> 6 print mean_squared_error(y_train_actual, y_valid_actual) C:\Python27\lib\site-packages\sklearn\metrics\metrics.pyc in mean_squared_error(y_true, y_pred) 1461 1462 """ -> 1463 y_true, y_pred = check_arrays(y_true, y_pred) 1464 return np.mean((y_pred - y_true) ** 2) 1465 C:\Python27\lib\site-packages\sklearn\utils\validation.pyc in check_arrays(*arrays, **options) 191 if size != n_samples: 192 raise ValueError("Found array with dim %d. Expected %d" --> 193 % (size, n_samples)) 194 195 if not allow_lists or hasattr(array, "shape"): ValueError: Found array with dim 40663. Expected 244768
code
print type(y_train) print type(y_train_actual) print type(salaries)
Result
<type 'list'> <type 'list'> <type 'tuple'>
print y_train [: 10]
[10.126631103850338, 10.308952660644293, 10.308952660644293, 10.221941283654663, 10.126631103850338, 10.126631103850338, 11.225243392518447, 9.9987977323404529, 10.043249494911286, 11.350406535472453]
print salaries [: 10]
('25000', '30000', '30000', '27500', '25000', '25000', '75000', '22000', '23000', '85000')
print the list (salaries) [: 10]
['25000', '30000', '30000', '27500', '25000', '25000', '75000', '22000', '23000', '85000']
print len โโ(y_train)
244768
seal len (salary)
244768