, .
samplez 1 , zfit 500 . zfit 50 . , " " each_element_in_samplez . 5e13, , , . .
, . 1, (e-d), . 2, map. 22%.
def function_map(samplez, zfit):
diff=zfit[:,:-1]-zfit[:,1:]
def _fuc1(x):
a = x-zfit
mask = np.ma.masked_array(a)
mask[a <= 0] = np.ma.masked
index = mask.argmin(axis=1)
d = zfit[:,index]
f = (x-d)/diff[:,index]
return (index, f)
result=map(_fuc1, samplez)
return (np.array([item[1] for item in result]),
np.array([item[0] for item in result]))
: masked_array ( ). samplez .
>>> x1=arange(50)
>>> x2=random.random(size=(20, 10))*120
>>> x2=sort(x2, axis=1)
>>> x3=x2*1
>>> f1=lambda: function_map2(x1,x3)
>>> f0=lambda: function_map(x1, x2)
>>> def function_map2(samplez, zfit):
_diff=diff(zfit, axis=1)
_zfit=zfit*1
def _fuc1(x):
_zfit[_zfit<x]=(+inf)
index = nanargmin(zfit, axis=1)
d = zfit[:,index]
f = (x-d)/_diff[:,index]
return (index, f)
result=map(_fuc1, samplez)
return (np.array([item[1] for item in result]),
np.array([item[0] for item in result]))
>>> import timeit
>>> t1=timeit.Timer('f1()', 'from __main__ import f1')
>>> t0=timeit.Timer('f0()', 'from __main__ import f0')
>>> t0.timeit(5)
0.09083795547485352
>>> t1.timeit(5)
0.05301499366760254
>>> t0.timeit(50)
0.8838210105895996
>>> t1.timeit(50)
0.5063929557800293
>>> t0.timeit(500)
8.900799036026001
>>> t1.timeit(500)
4.614129018783569
, 50% .
masked_array, . - . samplez . , , float16 float32 float64, .