Why matrix transfer before multiplication leads to significant acceleration

I heard that transferring the matrix to multiplication will significantly speed up work due to the locality of the cache. So I wrote a simple C ++ program to test it with string ordering (compilation requires C ++ 11 and boost).

The results are astounding: 7.43 seconds versus 0.94 seconds. But I do not understand why it is accelerating. Indeed, in the second version (transposition first), the multiplication code accesses data using the stride-1 template and has a much better locality than the first. However, in order to transpose matrix B, it is also necessary to ignore the data and lead to a large number of cache misses. The overhead of memory allocation and data copying should also be illiterate. So, why does the second version significantly speed up the code?

#include <iostream>
#include <vector>
#include <boost/timer/timer.hpp>
#include <random>

std::vector<int> random_ints(size_t size)
{
    std::vector<int> result;
    result.reserve(size);
    std::random_device rd;
    std::mt19937 engine(rd());
    std::uniform_int_distribution<int> dist(0, 100);
    for (size_t i = 0; i < size; ++i)
        result.push_back(dist(engine));
    return result;
}

// matrix A: m x n; matrix B: n x p; matrix C: m x n;
std::vector<int> matrix_multiply1(const std::vector<int>& A, const std::vector<int>& B, size_t m, size_t n, size_t p)
{
    boost::timer::auto_cpu_timer t;
    std::vector<int> C(m * p);
    for (size_t i = 0; i < m; ++i)
    {
        for (size_t j = 0; j < p; ++j)
        {
            for (size_t k = 0; k < n; ++k)
            {
                C[i * m + j] += A[i * m + k] * B[k * n + j];
                // B is accessed non-sequentially
            }
        }
    }
    return C;
}

// matrix A: m x n; matrix B: n x p; matrix C: m x n;
std::vector<int> matrix_multiply2(const std::vector<int>& A, const std::vector<int>& B, size_t m, size_t n, size_t p)
{
    boost::timer::auto_cpu_timer t;
    std::vector<int> C(m * p), B_transpose(n * p);

    // transposing B
    for (size_t i = 0; i < n; ++i)
    {
        for (size_t j = 0; j < p; ++j)
        {
            B_transpose[i + j * p] = B[i * n + j];
            // B_transpose is accessed non-sequentially
        }
    }

    // multiplication
    for (size_t i = 0; i < m; ++i)
    {
        for (size_t j = 0; j < p; ++j)
        {
            for (size_t k = 0; k < n; ++k)
            {
                C[i * m + j] += A[i * m + k] * B_transpose[k + j * p];
                // all sequential access
            }
        }
    }
    return C;
}

int main()
{
    const size_t size = 1 << 10;
    auto A = random_ints(size * size);
    auto C = matrix_multiply1(A, A, size, size, size);
    std::cout << C.front() << ' ' << C.back() << std::endl; // output part of the result
    C = matrix_multiply2(A, A, size, size, size);
    std::cout << C.front() << ' ' << C.back() << std::endl; // compare with output of algorithm 1
    return 0;
}
+4
source share
1 answer

Multiplication involves much more access than transposition, so it dominates the execution time.

, for:

// transpose
for (size_t i = 0; i < n; ++i)
    for (size_t j = 0; j < p; ++j)
        ...

// multiplication
for (size_t i = 0; i < m; ++i)
    for (size_t j = 0; j < p; ++j)
        for (size_t k = 0; k < n; ++k)
            ...

, , .

+1

All Articles