How can I count a resampled multi-indexed data frame in pandas

I found this description of how to reprogram a multi-index:

Re-fetching inside Pandas MultiIndex

However, as soon as I use count instead of sum, the solution no longer works

This may be due to: Re-fetching with a call to `how = count '

Count and the line do not work :

values_a =[1]*16
states = ['Georgia']*8 + ['Alabama']*8
#cities = ['Atlanta']*4 + ['Savanna']*4 + ['Mobile']*4 + ['Montgomery']*4
dates = pd.DatetimeIndex([datetime.datetime(2012,1,1)+datetime.timedelta(days = i) for i in range(4)]*4)
df2 = pd.DataFrame(
    {'value_a': values_a},
    index = [states, dates])
df2.index.names = ['State', 'Date']
df2.reset_index(level=[0], inplace=True)
print(df2.groupby(['State']).resample('W',how='count'))

Productivity:

         2012-01-01           2012-01-08         
              State  value_a       State  value_a
State                                            
Alabama           2        2           6        6
Georgia           2        2           6        6

Working version with sum and numbers as values

values_a =[1]*16
states = ['Georgia']*8 + ['Alabama']*8
#cities = ['Atlanta']*4 + ['Savanna']*4 + ['Mobile']*4 + ['Montgomery']*4
dates = pd.DatetimeIndex([datetime.datetime(2012,1,1)+datetime.timedelta(days = i) for i in range(4)]*4)
df2 = pd.DataFrame(
    {'value_a': values_a},
    index = [states, dates])
df2.index.names = ['State', 'Date']
df2.reset_index(level=[0], inplace=True)
print(df2.groupby(['State']).resample('W',how='sum'))

Profitability (do not notice duplication of "Status"):

                    value_a
State   Date               
Alabama 2012-01-01        2
        2012-01-08        6
Georgia 2012-01-01        2
        2012-01-08        6
+1
source share
2 answers

count ( ), resample ( , ). - ( , count value_a),

>>> print df2.groupby(['State']).resample('W',how={'value_a':'count'})

                    value_a
State   Date               
Alabama 2012-01-01        2
        2012-01-08        6
Georgia 2012-01-01        2
        2012-01-08        6

, , how :

>>> print df2.groupby(['State']).resample('W',how={'value_a':'count','State':'last'})

                      State  value_a
State   Date                        
Alabama 2012-01-01  Alabama        2
        2012-01-08  Alabama        6
Georgia 2012-01-01  Georgia        2
        2012-01-08  Georgia        6

, count , how='count'. , , :

print df2.groupby(['State']).resample('W',how={'value_a':'count','State':'count'})

                   State  value_a
State   Date                      
Alabama 2012-01-01      2        2
        2012-01-08      6        6
Georgia 2012-01-01      2        2
        2012-01-08      6        6
+1

@Karl D soln ; 0.14/master ( ), . docs

In [118]: df2.groupby([pd.Grouper(level='Date',freq='W'),'State']).count()
Out[118]: 
                    value_a
Date       State           
2012-01-01 Alabama        2
           Georgia        2
2012-01-08 Alabama        6
           Georgia        6

0,14 / , , . pd.Grouper .

+1

All Articles