Internal join with SqlAlchemy

I have an original internal count connection query written directly in Postgres SQL:

    SELECT "films"."id" AS "megaId", 
           COUNT("filmComments"."id") AS "numOfComments" 
      FROM "films"
INNER JOIN "filmComments" 
        ON ("films"."id" = "filmComments"."filmId") 
  GROUP BY "films"."id";

How can I do the same using regular SqlAlchemy, without connection.execute(sqlCode)?

PS SqlAlchemy table classes:

from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()
from sqlalchemy import Column, Integer, String, Date, Float

class Film(Base):
    __tablename__ = "films"
    id = Column(Integer, primary_key = True)
    name = Column(String)
    rating = Column(Float)
    marksCount = Column(Integer)
    commentsCount = Column(Integer, index=True)


class FilmComment(Base):
    __tablename__ = "filmComments"
    id = Column(Integer, primary_key = True)
    filmId = Column(Integer, index=True)
    rating = Column(Integer, index=True)
    text = Column(String)
    votesUp = Column(Integer)
    votesDown = Column(Integer)
    userId = Column(Integer)
    date = Column(Date)
+4
source share
1 answer

Matching this with SQLAlchemy should be pretty simple. I do not consider aliases for obvious reasons.

from sqlalchemy import func

megaId, numOfComments = (session.query(Film.id, func.count(FilmComment.id))
                                .join(FilmComment, Film.id == FilmComment.filmId)
                                .group_by(Film.id).first())

That should work. An explicit sentence onwould not be needed if FilmComment.filmIdit was declared as a foreign key.

+5
source