cvxopt - http://cvxopt.org/
http://cvxopt.org/userguide/solvers.html#problems-with-nonlinear-objectives
fmin, , , /.
HYRY , fmin W , fmin W- , , ( ). cvxopt HYRY, , : ... :
'''CVXOPT version:'''
from numpy import *
from cvxopt import matrix, mul
''' warning: CVXOPT uses column-major order (Fortran) '''
m = 5
n = 3
n_active = (n)*(n-1)
A = matrix(random.rand(m*n),(m,n))
ids = arange(n)
beta = 0.1;
lam = 0.2;
W = matrix(zeros(n*n), (n,n));
def cvx_objective_func(w=None, z=None):
if w is None:
num_nonlinear_constraints = 0;
w_0 = matrix(1, (n_active,1), 'd');
return num_nonlinear_constraints, w_0
'calculate objective:'
'form W matrix, warning _w is column-major order (Fortran)'
'''column-major order!'''
_w = matrix(w, (n, n-1))
for k in xrange(n):
W[k, 0:k] = _w[k, 0:k]
W[k, k+1:n] = _w[k, k:n-1]
squared_error = A - A*W
objective_value = .5 * sum( mul(squared_error,squared_error)) +\
.5* beta*sum(mul(W,W)) +\
lam * sum(abs(W));
'not sure if i calculated this right...'
_Df = -A.T*(squared_error) + beta*W + lam;
'''column-major order!'''
Df = matrix(0., (1, n*(n-1)))
for jdx in arange(n):
for idx in list(arange(0,jdx)) + list(arange(jdx+1,n)):
idx = int(idx);
jdx = int(jdx)
Df[0, jdx*(n-1) + idx] = _Df[idx, jdx]
if z is None:
return objective_value, Df
'''Also form hessian of objective+non-linear constraints
(but there are no nonlinear constraints) :
This is the trickiest part...
WARNING: H is for sure coded wrong'''
H = matrix(1., (n_active, n_active))
return objective_value, Df, H
m, w_0 = cvx_objective_func()
print cvx_objective_func(w_0)
G = -matrix(diag(ones(n_active),), (n_active,n_active))
h = matrix(0., (n_active,1), 'd')
from cvxopt import solvers
print solvers.cp(cvx_objective_func, G=G, h=h)
, / HYRY