Therefore, I need to calculate the joint probability distribution for N variables. I have code for two variables, but it's hard for me to generalize it to higher sizes. I suppose there is some kind of python vectorization that might be useful, but right now my code is very similar to C (and yes, I know this is the wrong way to write Python). My 2D code is below:
import numpy
import math
feature1 = numpy.array([1.1,2.2,3.0,1.2,5.4,3.4,2.2,6.8,4.5,5.6,1.9,2.8,3.7,4.4,7.3,8.3,8.1,7.0,8.0,6.8,6.2,4.9,5.7,6.3,3.7,2.4,4.5,8.5,9.5,9.9]);
feature2 = numpy.array([11.1,12.8,13.0,11.6,15.2,13.8,11.1,17.8,12.5,15.2,11.6,20.8,14.7,14.4,15.3,18.3,11.4,17.0,16.0,16.8,12.2,14.9,15.7,16.3,13.7,12.4,14.2,18.5,19.8,19.0]);
numFrames = len(feature1);
allFeatures = numpy.zeros((2,numFrames));
allFeatures[0,:] = feature1;
allFeatures[1,:] = feature2;
numBins = int(0.25*numFrames);
allBins = numpy.zeros((allFeatures.shape[0],numBins+1));
allRanges = numpy.zeros((allFeatures.shape[0],2));
for f in range(allFeatures.shape[0]):
allRanges[f,0] = numpy.amin(allFeatures[f,:]);
allRanges[f,1] = numpy.amax(allFeatures[f,:]);
allIndividualProbs = numpy.zeros((allFeatures.shape[0],numBins));
for f in range(allFeatures.shape[0]):
freqhist, binedges = numpy.histogram(allFeatures[f,:],bins=numBins,range=[allRanges[f,0],allRanges[f,1]],density=False);
allBins[f,:] = binedges;
allIndividualProbs[f,:] = freqhist;
jointProbs = numpy.zeros((numBins,numBins));
numElements = 0;
for b1 in range(numBins):
for b2 in range(numBins):
for f1 in range(numFrames):
for f2 in range(numFrames):
if ( ( (feature1[f1] >= allBins[0,b1]) and (feature1[f1] <= allBins[0,b1+1]) ) and ((feature2[f2] >= allBins[1,b2]) and (feature2[f2] <= allBins[1,b2+1])) ):
jointProbs[b1,b2] += 1;
numElements += 1;
jointProbs /= numElements;
feature3 = numpy.array([21.1,21.8,23.5,27.6,25.2,23.8,22.1,22.8,26.5,25.2,28.6,20.8,24.7,24.4,29.3,28.3,27.4,26.0,26.2,26.1,25.9,24.0,22.7,22.3,23.7,26.4,24.2,28.5,29.8,29.0]);
How can I generalize a big loop? For N variables (functions) this cycle will be huge. Is there any way Pythonic can do this easily?