Bicubic interpolation?

I browsed the internet, and in terms of bicubic interpolation, I cannot find a simple equation for this. The Wikipedia page on this subject was not very useful, so is there an easy way to find out how Bicubic Interpolation works and how to implement it? I use it to create Perlin Noise, but using bilinear interpolation is a way to interrupt my needs (I already tried).

If someone can point me in the right direction with either a good website or just an answer, I would really appreciate it. (By the way, I am using C #)

+4
source share
3 answers

this ( Ahmet Kakıcı, ), , Bicubic Interpolation. , , :

private float CubicPolate( float v0, float v1, float v2, float v3, float fracy ) {
    float A = (v3-v2)-(v0-v1);
    float B = (v0-v1)-A;
    float C = v2-v0;
    float D = v1;

    return A*Mathf.Pow(fracy,3)+B*Mathf.Pow(fracy,2)+C*fracy+D;
}

2D-, x, y. .

float x1 = CubicPolate( ndata[0,0], ndata[1,0], ndata[2,0], ndata[3,0], fracx );
float x2 = CubicPolate( ndata[0,1], ndata[1,1], ndata[2,1], ndata[3,1], fracx );
float x3 = CubicPolate( ndata[0,2], ndata[1,2], ndata[2,2], ndata[3,2], fracx );
float x4 = CubicPolate( ndata[0,3], ndata[1,3], ndata[2,3], ndata[3,3], fracx );

float y1 = CubicPolate( x1, x2, x3, x4, fracy );

ndata :

float[,] ndata = new float[4,4];
for( int X = 0; X < 4; X++ )
    for( int Y = 0; Y < 4; Y++ )
        //Smoothing done by averaging the general area around the coords.
        ndata[X,Y] = SmoothedNoise( intx+(X-1), inty+(Y-1) );

(intx inty - , fracx fracy - , x-intx y-inty )

+6

.

, 0 1, , . , ....

x = 0,5

, 0 1, , , (), .

( , )

    //Bicubic convolution algorithm, cubic Hermite spline
    static double CubicPolateConv
            (double vm1, double v0, double vp1, double vp2, double frac) {
        //The polynomial of degree 3 where P(x)=f(x) for x in {0,1}
        //and P'(1) in one cell matches P'(0) in the next, gives a continous smooth curve.
        //And we also wants the it to reduce nicely to a line, if that matches the data
        //P(x)=Ax^3+Bx^2+Cx-D=((Ax+B)x+C)X+D
        //P(0)=D       =v0
        //P(1)=A+B+C+D =Vp1
        //P'(0)=C      =(vp1-vm1)/2
        //p'(1)=3A+2B+C=(vp2-v0 )/2
        //Subtracting first and third from the second  
        //A+B =vp1-C-D = (vp1+vm1)/2 - v0
        //Subtracting that twice and a C from the last
        //A=(vp2-v0)/2 - 2(A+B) -C =(vp2-v0)/2 - (Vp1+vm1-2v0) - (vp1-vm1)/2
        // = 3(v0-vp1)/2 + (vp2-vm1)/2
        //B=(A+B)-A = (vp1+vm1)/2 - v0 - (3(v0-vp1)/2 + (vp2-vm1)/2)
        // = vm1 + 2vp1 - (5v0+vp2)/2;
        double C = (vp1 - vm1) / 2;
        double ApB =vp1 -C -v0;
        double A = (vp2 - v0) / 2 - 2 * ApB - C;
        double B = ApB - A;
        //double B = vm1 + 2 * vp1 - (5 * v0 + vp2) / 2;
        //double A = (3*(v0 - vp1) + (vp2 - vm1)) / 2;

        return ((A * frac + B) * frac + C) * frac + v0;
    }
0

Took the answer from Eske Rahn and made one call (note that the code below uses the notation for the dimensions of the matrix (j, i), not the image (x, y), but this should not matter for interpolation):

/// <summary>
/// Holds extension methods.
/// </summary>
public static class Extension
{
    /// <summary>
    /// Performs a bicubic interpolation over the given matrix to produce a
    /// [<paramref name="outHeight"/>, <paramref name="outWidth"/>] matrix.
    /// </summary>
    /// <param name="data">
    /// The matrix to interpolate over.
    /// </param>
    /// <param name="outWidth">
    /// The width of the output matrix.
    /// </param>
    /// <param name="outHeight">
    /// The height of the output matrix.
    /// </param>
    /// <returns>
    /// The interpolated matrix.
    /// </returns>
    /// <remarks>
    /// Note, dimensions of the input and output matrices are in
    /// conventional matrix order, like [matrix_height, matrix_width],
    /// not typical image order, like [image_width, image_height]. This
    /// shouldn't effect the interpolation but you must be aware of it
    /// if you are working with imagery.
    /// </remarks>
    public static float[,] BicubicInterpolation(
        this float[,] data, 
        int outWidth, 
        int outHeight)
    {
        if (outWidth < 1 || outHeight < 1)
        {
            throw new ArgumentException(
                "BicubicInterpolation: Expected output size to be " +
                $"[1, 1] or greater, got [{outHeight}, {outWidth}].");
        }

        // props to https://stackoverflow.com/a/20924576/240845 for getting me started
        float InterpolateCubic(float v0, float v1, float v2, float v3, float fraction)
        {
            float p = (v3 - v2) - (v0 - v1);
            float q = (v0 - v1) - p;
            float r = v2 - v0;

            return (fraction * ((fraction * ((fraction * p) + q)) + r)) + v1;
        }

        // around 6000 gives fastest results on my computer.
        int rowsPerChunk = 6000 / outWidth; 
        if (rowsPerChunk == 0)
        {
            rowsPerChunk = 1;
        }

        int chunkCount = (outHeight / rowsPerChunk) 
                         + (outHeight % rowsPerChunk != 0 ? 1 : 0);

        var width = data.GetLength(1);
        var height = data.GetLength(0);
        var ret = new float[outHeight, outWidth];

        Parallel.For(0, chunkCount, (chunkNumber) =>
        {
            int jStart = chunkNumber * rowsPerChunk;
            int jStop = jStart + rowsPerChunk;
            if (jStop > outHeight)
            {
                jStop = outHeight;
            }

            for (int j = jStart; j < jStop; ++j)
            {
                float jLocationFraction = j / (float)outHeight;
                var jFloatPosition = height * jLocationFraction;
                var j2 = (int)jFloatPosition;
                var jFraction = jFloatPosition - j2;
                var j1 = j2 > 0 ? j2 - 1 : j2;
                var j3 = j2 < height - 1 ? j2 + 1 : j2;
                var j4 = j3 < height - 1 ? j3 + 1 : j3;
                for (int i = 0; i < outWidth; ++i)
                {
                    float iLocationFraction = i / (float)outWidth;
                    var iFloatPosition = width * iLocationFraction;
                    var i2 = (int)iFloatPosition;
                    var iFraction = iFloatPosition - i2;
                    var i1 = i2 > 0 ? i2 - 1 : i2;
                    var i3 = i2 < width - 1 ? i2 + 1 : i2;
                    var i4 = i3 < width - 1 ? i3 + 1 : i3;
                    float jValue1 = InterpolateCubic(
                        data[j1, i1], data[j1, i2], data[j1, i3], data[j1, i4], iFraction);
                    float jValue2 = InterpolateCubic(
                        data[j2, i1], data[j2, i2], data[j2, i3], data[j2, i4], iFraction);
                    float jValue3 = InterpolateCubic(
                        data[j3, i1], data[j3, i2], data[j3, i3], data[j3, i4], iFraction);
                    float jValue4 = InterpolateCubic(
                        data[j4, i1], data[j4, i2], data[j4, i3], data[j4, i4], iFraction);
                    ret[j, i] = InterpolateCubic(
                        jValue1, jValue2, jValue3, jValue4, jFraction);
                }
            }
        });

        return ret;
    }
}
0
source

All Articles