How can I access SHA intrinsic?

Gprof tells me that my computationally heavy program spends most of the time (36%) of hashing using AP-Hash.

I cannot reduce the number of calls, but I would still like to do it faster, can I call the built-in SHA from ac?

Do I need an Intel compiler or can I use gcc?

+4
source share
2 answers

SHA instructions are now available in Goldmont Architecture . It was released around September 2016. According to the Intel Intrinsics Guide , these are the intuitions you are interested in:

  • __m128i _mm_sha1msg1_epu32 (__m128i a, __m128i b)
  • __m128i _mm_sha1msg2_epu32 (__m128i a, __m128i b)
  • __m128i _mm_sha1nexte_epu32 (__m128i a, __m128i b)
  • __m128i _mm_sha1rnds4_epu32 (__m128i a, __m128i b, const int func)
  • __m128i _mm_sha256msg1_epu32 (__m128i a, __m128i b)
  • __m128i _mm_sha256msg2_epu32 (__m128i a, __m128i b)
  • __m128i _mm_sha256rnds2_epu32 (__m128i a, __m128i b, __m128i k)

GCC 5.0 Specific Option Pragmas. Binutils 2.24. , Clang 3.7 3.8 . , Visual Studio 2015 , VS2013 .

SHA Linux, __SHA__. -march=native , . , -msha.

$ gcc -march=native -dM -E - </dev/null | egrep -i '(aes|rdrnd|rdseed|sha)'
#define __RDRND__ 1
#define __SHA__ 1
#define __RDSEED__ 1
#define __AES__ 1

SHA1. Intel Intel® SHA Extensions. miTLS.


, Intel® SHA Extensions. SHA1, const uint32_t *data 64 . .

Celeron J3455 1,7 (cpb). , SHA1 1.5 cpb OpenSSL. C/++ - 9-10 cpb.

static void SHA1_SHAEXT_Transform(uint32_t *state, const uint32_t *data)
{
    __m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
    __m128i MASK, MSG0, MSG1, MSG2, MSG3;

    // Load initial values
    ABCD = _mm_loadu_si128((__m128i*) state);
    E0 = _mm_set_epi32(state[4], 0, 0, 0);
    ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
    MASK = _mm_set_epi64x(0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);

    // Save current hash
    ABCD_SAVE = ABCD;
    E0_SAVE = E0;

    // Rounds 0-3
    MSG0 = _mm_loadu_si128((__m128i*) data+0);
    MSG0 = _mm_shuffle_epi8(MSG0, MASK);
    E0 = _mm_add_epi32(E0, MSG0);
    E1 = ABCD;
    ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);

    // Rounds 4-7
    MSG1 = _mm_loadu_si128((__m128i*) (data+4));
    MSG1 = _mm_shuffle_epi8(MSG1, MASK);
    E1 = _mm_sha1nexte_epu32(E1, MSG1);
    E0 = ABCD;
    ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
    MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);

    // Rounds 8-11
    MSG2 = _mm_loadu_si128((__m128i*) (data+8));
    MSG2 = _mm_shuffle_epi8(MSG2, MASK);
    E0 = _mm_sha1nexte_epu32(E0, MSG2);
    E1 = ABCD;
    ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
    MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
    MSG0 = _mm_xor_si128(MSG0, MSG2);

    // Rounds 12-15
    MSG3 = _mm_loadu_si128((__m128i*) (data+12));
    MSG3 = _mm_shuffle_epi8(MSG3, MASK);
    E1 = _mm_sha1nexte_epu32(E1, MSG3);
    E0 = ABCD;
    MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
    MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
    MSG1 = _mm_xor_si128(MSG1, MSG3);

    // Rounds 16-19
    E0 = _mm_sha1nexte_epu32(E0, MSG0);
    E1 = ABCD;
    MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
    MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
    MSG2 = _mm_xor_si128(MSG2, MSG0);

    // Rounds 20-23
    E1 = _mm_sha1nexte_epu32(E1, MSG1);
    E0 = ABCD;
    MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
    MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
    MSG3 = _mm_xor_si128(MSG3, MSG1);

    // Rounds 24-27
    E0 = _mm_sha1nexte_epu32(E0, MSG2);
    E1 = ABCD;
    MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
    MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
    MSG0 = _mm_xor_si128(MSG0, MSG2);

    // Rounds 28-31
    E1 = _mm_sha1nexte_epu32(E1, MSG3);
    E0 = ABCD;
    MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
    MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
    MSG1 = _mm_xor_si128(MSG1, MSG3);

    // Rounds 32-35
    E0 = _mm_sha1nexte_epu32(E0, MSG0);
    E1 = ABCD;
    MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
    MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
    MSG2 = _mm_xor_si128(MSG2, MSG0);

    // Rounds 36-39
    E1 = _mm_sha1nexte_epu32(E1, MSG1);
    E0 = ABCD;
    MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
    MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
    MSG3 = _mm_xor_si128(MSG3, MSG1);

    // Rounds 40-43
    E0 = _mm_sha1nexte_epu32(E0, MSG2);
    E1 = ABCD;
    MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
    MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
    MSG0 = _mm_xor_si128(MSG0, MSG2);

    // Rounds 44-47
    E1 = _mm_sha1nexte_epu32(E1, MSG3);
    E0 = ABCD;
    MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
    MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
    MSG1 = _mm_xor_si128(MSG1, MSG3);

    // Rounds 48-51
    E0 = _mm_sha1nexte_epu32(E0, MSG0);
    E1 = ABCD;
    MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
    MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
    MSG2 = _mm_xor_si128(MSG2, MSG0);

    // Rounds 52-55
    E1 = _mm_sha1nexte_epu32(E1, MSG1);
    E0 = ABCD;
    MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
    MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
    MSG3 = _mm_xor_si128(MSG3, MSG1);

    // Rounds 56-59
    E0 = _mm_sha1nexte_epu32(E0, MSG2);
    E1 = ABCD;
    MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
    MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
    MSG0 = _mm_xor_si128(MSG0, MSG2);

    // Rounds 60-63
    E1 = _mm_sha1nexte_epu32(E1, MSG3);
    E0 = ABCD;
    MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
    MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
    MSG1 = _mm_xor_si128(MSG1, MSG3);

    // Rounds 64-67
    E0 = _mm_sha1nexte_epu32(E0, MSG0);
    E1 = ABCD;
    MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
    MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
    MSG2 = _mm_xor_si128(MSG2, MSG0);

    // Rounds 68-71
    E1 = _mm_sha1nexte_epu32(E1, MSG1);
    E0 = ABCD;
    MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
    MSG3 = _mm_xor_si128(MSG3, MSG1);

    // Rounds 72-75
    E0 = _mm_sha1nexte_epu32(E0, MSG2);
    E1 = ABCD;
    MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
    ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);

    // Rounds 76-79
    E1 = _mm_sha1nexte_epu32(E1, MSG3);
    E0 = ABCD;
    ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);

    // Add values back to state
    E0 = _mm_sha1nexte_epu32(E0, E0_SAVE);
    ABCD = _mm_add_epi32(ABCD, ABCD_SAVE);

    // Save state
    ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
    _mm_storeu_si128((__m128i*) state, ABCD);
    *(state+4) = _mm_extract_epi32(E0, 3);
}

, SHA Linux, sha_ni:

$ cat /proc/cpuinfo
processor   : 0
vendor_id   : GenuineIntel
cpu family  : 6
model       : 92
model name  : Intel(R) Celeron(R) CPU J3455 @ 1.50GHz
stepping    : 9
microcode   : 0x1a
cpu MHz     : 799.987
cache size  : 1024 KB
physical id : 0
siblings    : 4
core id     : 0
cpu cores   : 4
apicid      : 0
initial apicid  : 0
fpu     : yes
fpu_exception   : yes
cpuid level : 21
wp      : yes
flags       : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 
clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc 
art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclm
ulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg cx16 xtpr pdcm sse4_1 sse4_2 x2apic mov
be popcnt tsc_deadline_timer aes xsave rdrand lahf_lm 3dnowprefetch intel_pt tpr_shadow vn
mi flexpriority ept vpid fsgsbase tsc_adjust smep erms mpx rdseed smap clflushopt sha_ni x
saveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts
bugs        : monitor
bogomips    : 2995.20
clflush size    : 64
cache_alignment : 64
address sizes   : 39 bits physical, 48 bits virtual
power management:
...

. x86 SHA (SHA1/2/256/512)?

Intel SHA, ARMv8 SHA Noloader GitHub | SHA-Intrinsics. C SHA-1, SHA-224 SHA-256. 3x 4x SHA-1 6x 12x SHA-224 SHA-256.

+4

Intel, . SHA CPU; , Intel Skylake ( 2015 2016 ).

, AP--, , , SHA. , - .

+2

All Articles