estimators_Your object field AdaBoostClassifiercontains each of your models. Viewing the details of these models will depend on what was used to create them. For example, you may need to see how to search for information about DecisionTreeClassifierin the following example:
>>> from sklearn.datasets import load_iris
>>> from sklearn.ensemble import AdaBoostClassifier
>>>
>>> iris = load_iris()
>>> clf = AdaBoostClassifier(n_estimators=2)
>>> clf.fit(iris.data, iris.target)
AdaBoostClassifier(algorithm='SAMME.R',
base_estimator=DecisionTreeClassifier(compute_importances=None, criterion='gini',
max_depth=1, max_features=None, min_density=None,
min_samples_leaf=1, min_samples_split=2, random_state=None,
splitter='best'),
learning_rate=1.0, n_estimators=2, random_state=None)
>>> clf.estimators_
[DecisionTreeClassifier(compute_importances=None, criterion='gini',
max_depth=1, max_features=None, min_density=None,
min_samples_leaf=1, min_samples_split=2, random_state=None,
splitter='best'), DecisionTreeClassifier(compute_importances=None, criterion='gini',
max_depth=1, max_features=None, min_density=None,
min_samples_leaf=1, min_samples_split=2, random_state=None,
splitter='best')]
>>>
>>>
... clf.estimators_[0]
DecisionTreeClassifier(compute_importances=None, criterion='gini',
max_depth=1, max_features=None, min_density=None,
min_samples_leaf=1, min_samples_split=2, random_state=None,
splitter='best')
>>>
... clf.estimators_[1]
DecisionTreeClassifier(compute_importances=None, criterion='gini',
max_depth=1, max_features=None, min_density=None,
min_samples_leaf=1, min_samples_split=2, random_state=None,
splitter='best')