There are several ways to do this. For example, np.arange(10) == 4it gives you an array of all values Falseexcept one Trueat position 4.
Under the covers, NumPy values boolare equal 0and 1how uint8(just like Python values bool 0and 1, although they have a unique integral type) so you can just use it as it is in any expression:
>>> np.arange(10) == 4
array([False, False, False, False, True, False, False, False, False, False], dtype=bool)
>>> np.arange(10) * 1
array([0, 0, 0, 0, 1, 0, 0, 0, 0, 0])
>>> np.arange(10) + 23
array([23, 23, 23, 23, 24, 23, 23, 23, 23, 23])
... view uint8 bool:
>>> (np.arange(10) == 4).view(np.uint8)
array([0, 0, 0, 0, 1, 0, 0, 0, 0, 0], dtype=uint8)
... , int, :
>>> (np.arange(10) == 4).astype(int)
array ([0, 0, 0, 0, 1, 0, 0, 0, 0, 0])
.
, , 20% , , , , ?