as.factor / , R ; , , 1, 2 ..
, "" , ( , /dfs, id), :
x <- letters[1:5]
y <- letters[3:8]
allvalues <- unique(union(x,y)) # superfluous but I think it adds clarity
x <- factor(x, levels = allvalues)
y <- factor(y, levels = allvalues)
str(x) # Factor w/ 8 levels "a","b","c","d",..: 1 2 3 4 5
str(y) # Factor w/ 8 levels "a","b","c","d",..: 3 4 5 6 7 8
, , R , , :
y <- sample(1:2, size = 20, replace = T)
x <- factor(letters[y], levels = c("b","a"))
y <- y + rnorm(0, 0.2, n = 20)
Set <- data.frame(x = x, y = y)
fit <- lm(data = Set, y ~ x)
: str(x), str(y), summary(fit).
, fit x = a ( 2) y ~= 1 y = b x ~= 2.
"" :
x2 <- factor(c("a","b"), levels = c("c","d","a","b"))
str(x2) # Factor w/ 4 levels "c","d","a","b": 3 4
predict, , R:
predict(fit, newdata = data.frame(x = x2))
, R...