The example below iterates over lil_matrixand calculates the sum for each row.
. Cython , . ...
import time
import numpy as np
cimport numpy as np
from scipy.sparse import lil_matrix
cdef iter_over_lil_matrix(m):
cdef list sums, data_row
sums = []
for data_row in m.data:
s = 0
for value in data_row:
s += value
sums.append(s)
return sums
def main():
a = np.random.random((1e4*1e4))
a[a>0.1] = 0
a = a.reshape(1e4,1e4)
m = lil_matrix(a)
t0 = time.clock()
sums = iter_over_lil_matrix(m)
t1 = time.clock()
print 'Cython lil_matrix Time', t1-t0
t0 = time.clock()
array_sums = a.sum(axis=1)
t1 = time.clock()
print 'Numpy ndarray Time', t1-t0
t0 = time.clock()
lil_sums = m.sum(axis=1)
t1 = time.clock()
print 'lil_matrix Time', t1-t0
mcsr = m.tocsr()
t0 = time.clock()
csr_sums = mcsr.sum(axis=1)
t1 = time.clock()
print 'csr_matrix Time', t1-t0
assert np.allclose(array_sums, sums)
assert np.allclose(array_sums, np.asarray(lil_sums).flatten())
assert np.allclose(array_sums, np.asarray(csr_sums).flatten())
- 2 , NumPy: D, , lil_matrix.sum(), csr_matrix() , @hpaulj . , csr_matrix.sum() , .
Cython lil_matrix Time 0.183935034665
Numpy ndarray Time 0.106583238273
lil_matrix Time 2.47158218631
csr_matrix Time 0.0140050888745
, :
for i in range(len(m.data)): data_row = m.data[i]np.ndarray[object, ndim=1] data data=m.data
, :