(1 2 3 4) (1 (2 (3 (4)))) , , . : t, 4, 3 4, : . , 4 , . , - , :
(reduce (lambda (x y)
(if y
(list x y)
(list x)))
'(1 2 3 4)
:from-end t
:initial-value nil)
;=> (1 (2 (3 (4))))
, , , . maptree, :
(defun maptree (function tree)
"Return a tree with the same structure as TREE, but
whose elements are the result of calling FUNCTION with
the element from TREE. Because TREE is treated as an
arbitrarily nested structure, any occurrence of NIL is
treated as an empty tree."
(cond
((null tree) tree)
((atom tree) (funcall function tree))
((cons (maptree function (car tree))
(maptree function (cdr tree))))))
(maptree '1+ '(1 2 (3 (4 5)) (6 7)))
;=> (2 3 (4 (5 6)) (7 8))
maptree, , , . substitute-into:
(defun substitute-into (items tree)
"Return a tree like TREE, but in which the elements
of TREE are replaced with elements drawn from ITEMS.
If there are more elements in TREE than there are in
ITEMS, the original elements of TREE remain in the result,
but a new tree structure is still constructed."
(maptree #'(lambda (x)
(if (endp items) x
(pop items)))
tree))
(substitute-into '(1 2 3 4 5) '(t (u (v)) (w x)))
;=> (1 (2 (3)) (4 5))
(substitute-into '(1 2 3 4 5) '(t u (v w x) y z))
;=> (1 2 (3 4 5) Y Z)
.
maptree - . Lisp , . :
(defun tree-reduce (node-fn leaf-fn tree)
(if (consp tree)
(funcall node-fn
(tree-reduce node-fn leaf-fn (car tree))
(tree-reduce node-fn leaf-fn (cdr tree)))
(funcall leaf-fn
tree)))
maptree :
(defun maptree (function tree)
(tree-reduce 'cons function tree))