Sklearn Pipeline: How to build cluster text for kmeans?

I have text as shown:

 list1 = ["My name is xyz", "My name is pqr", "I work in abc"]

The above will be a tutorial for clustering text using kmeans.

list2 = ["My name is xyz", "I work in abc"]

The above is my test suite.

I built a vectorizer and model as shown below:

vectorizer = TfidfVectorizer(min_df = 0, max_df=0.5, stop_words = "english", charset_error = "ignore", ngram_range = (1,3))
vectorized = vectorizer.fit_transform(list1)
km=KMeans(n_clusters=2, init='k-means++', n_init=10, max_iter=1000, tol=0.0001, precompute_distances=True, verbose=0, random_state=None, copy_x=True, n_jobs=1)
km.fit(vectorized)

If I try to predict the cluster for my test set "list2":

km.predict(list2)

I get an error message below:

ValueError: Incorrect number of features. Got 2 features, expected 5

I was told to use Pipelineto solve this problem. So I wrote the code below:

pipe = Pipeline([('vect', vectorizer), ('vectorized', vectorized), ('kmeans',km )])

But I get the error:

TypeError                                 Traceback (most recent call last)
/mnt/folder/Text_Mining/<ipython-input-14-321cabc3bf35> in <module>()
----> 1 pipe = Pipeline([('vect', vectorizer), ('vectorized', vectorized), ('kmeans',km )])
/usr/local/lib/python2.7/dist-packages/scikit_learn-0.13-py2.7-linux-x86_64.egg/sklearn/pipeline.pyc in __init__(self, steps)
     87                 raise TypeError("All intermediate steps a the chain should "
     88                                 "be transforms and implement fit and transform"
---> 89                                 "'%s' (type %s) doesn't)" % (t, type(t)))
     90
     91         if not hasattr(estimator, "fit"):
TypeError: All intermediate steps a the chain should be transforms and implement fit and transform'  (0, 2)     1.0
(1, 4)        0.57735026919
(1, 3)        0.57735026919
(1, 1)        0.57735026919
(2, 0)        1.0' (type <class 'scipy.sparse.csr.csr_matrix'>) doesn't)

, , , vectorized , ? . , kmeans? kmeans, , km.labels_. - Pipeline?

+4
1

, vectorizer list1, , transform list1 list2. . -:

>>> list1 = ["My name is xyz", "My name is pqr", "I work in abc"]
>>> list2 = ["My name is xyz", "I work in abc"]
>>> vectorizer = TfidfVectorizer(min_df = 0, max_df=0.5, stop_words = "english", charset_error = "ignore", ngram_range = (1,3))
>>> vec=vectorizer.fit(list1)   # train vec using list1
>>> vectorized = vec.transform(list1)   # transform list1 using vec
>>> km=KMeans(n_clusters=2, init='k-means++', n_init=10, max_iter=1000, tol=0.0001, precompute_distances=True, verbose=0, random_state=None, cpy_x=True, n_jobs=1)
>>> km.fit(vectorized)
>>> list2Vec=vec.transform(list2)  # transform list2 using vec
>>> km.predict(list2Vec)
array([0, 0], dtype=int32)
+2

All Articles