I have some data about user comments from which I want to find the name of consumer electronic brands. For example, consider the ne_chinked example, which refers to "PS4", "nokia 720 lumia", "apple ipad", "sony bravia": -
In [52]: nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize('When is the PS4 releasing')))
Out[52]: Tree('S', [('When', 'WRB'), ('is', 'VBZ'), ('the', 'DT'), Tree('ORGANIZATION', [('PS4', 'NNP')]), ('releasing', 'NN')])
In [53]: nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize('I couldnt find the nokia 720 lumia in stores')))
Out[53]: Tree('S', [('I', 'PRP'), ('couldnt', 'VBP'), ('find', 'JJ'), ('the', 'DT'), ('nokia', 'NN'), ('720', 'CD'), ('lumia', 'NN'), ('in', 'IN'), ('stores', 'NNS')])
In [54]: nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize('I just bought apple ipad and its really awesome')))
Out[54]: Tree('S', [('I', 'PRP'), ('just', 'RB'), ('bought', 'VBD'), ('apple', 'JJ'), ('ipad', 'NN'), ('and', 'CC'), ('its', 'PRP$'), ('really', 'RB'), ('awesome', 'JJ')])
In [55]: nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize('I would like to buy 1 Sony bravia led television')))
Out[55]: Tree('S', [('I', 'PRP'), ('would', 'MD'), ('like', 'VB'), ('to', 'TO'), ('buy', 'VB'), ('1', 'CD'), ('Sony', 'NNP'), ('bravia', 'IN'), ('led', 'VBN'), ('television', 'NN')])
The problem is how can I submit the data for svm to study. I read dozens of scientific papers, but none of them revealed how they represented these functions in svm. Can anybody help