Spark launcher running in cluster mode failed

I am new to Spark. Now I am faced with a problem: when I run the program in a stand-alone spark cluster, and on the command line:

./spark-submit --class scratch.Pi --deploy-mode cluster --executor-memory 5g --name pi --driver-memory 5g --driver-java-options "-XX:MaxPermSize=1024m" --master spark://bx-42-68:7077 hdfs://bx-42-68:9000/jars/pi.jar

It produces the following error:

15/01/28 19:48:51 INFO Slf4jLogger: Slf4jLogger started
15/01/28 19:48:51 INFO Utils: Successfully started service 'driverClient' on port 59290.
Sending launch command to spark://bx-42-68:7077
Driver successfully submitted as driver-20150128194852-0003
... waiting before polling master for driver state
... polling master for driver state
State of driver-20150128194852-0003 is FAILED

Cluster Log Out Wizard:

15/01/28 19:48:52 INFO Master: Driver submitted org.apache.spark.deploy.worker.DriverWrapper
15/01/28 19:48:52 INFO Master: Launching driver driver-20150128194852-0003 on worker worker-20150126133948-bx-42-151-26286
15/01/28 19:48:55 INFO Master: Removing driver: driver-20150128194852-0003
15/01/28 19:48:57 INFO Master: akka.tcp://driverClient@bx-42-68:59290 got disassociated, removing it.
15/01/28 19:48:57 INFO Master: akka.tcp://driverClient@bx-42-68:59290 got disassociated, removing it.
15/01/28 19:48:57 WARN ReliableDeliverySupervisor: Association with remote system [akka.tcp://driverClient@bx-42-68:59290] has failed, address is now gated for [5000] ms. Reason is: [Disassociated].
15/01/28 19:48:57 INFO LocalActorRef: Message [akka.remote.transport.ActorTransportAdapter$DisassociateUnderlying] from Actor[akka://sparkMaster/deadLetters] to Actor[akka://sparkMaster/system/transports/akkaprotocolmanager.tcp0/akkaProtocol-tcp%3A%2F%2FsparkMaster%4010.16.42.68%3A48091-16#-1393479428] was not delivered. [9] dead letters encountered. This logging can be turned off or adjusted with configuration settings 'akka.log-dead-letters' and 'akka.log-dead-letters-during-shutdown'. 

And the corresponding worker to run the driver program:

15/01/28 19:48:52 INFO Worker: Asked to launch driver driver-20150128194852-0003
15/01/28 19:48:52 INFO DriverRunner: Copying user jar hdfs://bx-42-68:9000/jars/pi.jar to /data11/spark-1.2.0-bin-hadoop2.4/work/driver-20150128194852-0003/pi.jar
Spark assembly has been built with Hive, including Datanucleus jars on classpath
15/01/28 19:48:55 INFO DriverRunner: Launch Command: "/opt/apps/jdk-1.7.0_60/bin/java" "-cp" "/data11/spark-1.2.0-bin-hadoop2.4/work/driver-20150128194852-0003/pi.jar:::/data11/spark-1.2.0-bin-hadoop2.4/sbin/../conf:/data11/spark-1.2.0-bin-hadoop2.4/lib/spark-assembly-1.2.0-hadoop2.4.0.jar:/data11/spark-1.2.0-bin-hadoop2.4/lib/datanucleus-api-jdo-3.2.6.jar:/data11/spark-1.2.0-bin-hadoop2.4/lib/datanucleus-core-3.2.10.jar:/data11/spark-1.2.0-bin-hadoop2.4/lib/datanucleus-rdbms-3.2.9.jar" "-XX:MaxPermSize=128m" "-Dspark.executor.memory=5g" "-Dspark.akka.askTimeout=10" "-Dspark.rdd.compress=true" "-Dspark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps" "-Dspark.serializer=org.apache.spark.serializer.KryoSerializer" "-Dspark.app.name=YANL" "-Dspark.driver.extraJavaOptions=-XX:MaxPermSize=1024m" "-Dspark.jars=hdfs://bx-42-68:9000/jars/pi.jar" "-Dspark.master=spark://bx-42-68:7077" "-Dspark.storage.memoryFraction=0.6" "-Dakka.loglevel=WARNING" "-XX:MaxPermSize=1024m" "-Xms5120M" "-Xmx5120M" "org.apache.spark.deploy.worker.DriverWrapper" "akka.tcp://sparkWorker@bx-42-151:26286/user/Worker" "scratch.Pi"
15/01/28 19:48:55 WARN Worker: Driver driver-20150128194852-0003 exited with failure

My spark-env.sh:

export SCALA_HOME=/opt/apps/scala-2.11.5
export JAVA_HOME=/opt/apps/jdk-1.7.0_60
export SPARK_HOME=/data11/spark-1.2.0-bin-hadoop2.4
export PATH=$JAVA_HOME/bin:$PATH
export SPARK_MASTER_IP=`hostname -f`
export SPARK_LOCAL_IP=`hostname -f`
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=10.16.42.68:2181,10.16.42.134:2181,10.16.42.151:2181,10.16.42.150:2181,10.16.42.125:2181 -Dspark.deploy.zookeeper.dir=/spark"
SPARK_WORKER_MEMORY=43g
SPARK_WORKER_CORES=22

And mine spark-defaults.conf:

spark.executor.extraJavaOptions  -XX:+PrintGCDetails -XX:+PrintGCTimeStamps
spark.executor.memory            20g
spark.rdd.compress               true
spark.storage.memoryFraction     0.6
spark.serializer                 org.apache.spark.serializer.KryoSerializer

However , when I run the program with the following command, it works fine. client

./spark-submit --class scratch.Pi --deploy-mode client --executor-memory 5g --name pi --driver-memory 5g --driver-java-options "-XX:MaxPermSize=1024m" --master spark://bx-42-68:7077 /data11/pi.jar
+4
source share
1 answer

, "", "", "" . (. ).

Alternatively, if your application is submitted from a machine far from the worker machines (e.g. locally on your laptop), it is common to use cluster mode to minimize network latency between the drivers and the executors. 

, , Mesos python.

" " , , .

: http://spark.apache.org/docs/1.2.0/submitting-applications.html

" " ".

, . .

0

All Articles