I tried to solve the Alpha # 20 Prob C Dijkstra problem , and I get TLE on Case 31, which has 100000nodes from the 99999edge. I guess my code complexity is O (E lg V), which is about 499995. I assumed this was fast enough, but due to bad results, I speed it up a bit using the built-in code for backtracking and some optimizations like dijkstra breaking as soon as the node target is removed from the queue. I do not think that this should affect the results, as if the node was deleted, it would mean that the best path was found, and we can enjoy. I now lack ideas for optimizing this code, so they arrived here. Code follows:
#include <iostream>
#include <vector>
#include <set>
#include <cstdio>
#include <climits>
#include <limits>
using namespace std;
typedef pair<int, int> ii;
typedef vector<ii> vii;
typedef vector<int> vi;
typedef vector<vii> vvii;
vi D;
vi parent;
vi path;
vvii graph;
void dijkstra(int i, int j)
{
set<ii> Q;
Q.insert(ii(0, i));
D[i] = 0; parent[i] = -555;
bool checked = false;
while(!Q.empty())
{
ii top = *Q.begin();
Q.erase(Q.begin());
int topnode = top.second;
for(vii::iterator it = graph[topnode].begin();it != graph[topnode].end();it++)
{
int v = it->first, d2 = it->second;
if(D[v] > D[topnode] + d2)
{
if(D[v] != INT_MAX)
{
Q.erase(Q.find(ii(D[v], v)));
}
D[v] = D[topnode] + d2; parent[v] = topnode;
Q.insert(ii(D[v], v));
if(v == j)
checked = true;
}
}
if(checked)
{
if(Q.find(ii(D[j], j)) == Q.end())
break;
}
}
}
int main(void) {
int n, m, x, y, z;
scanf("%d%d", &n, &m);
graph.clear(); graph.resize(n); D.resize(n, INT_MAX); parent.resize(n, -1);
while(m--)
{
scanf("%d%d%d", &x, &y, &z);
graph[x-1].push_back(ii(y-1, z));
graph[y-1].push_back(ii(x-1, z));
}
dijkstra(0, n-1);
if(D[n-1] == INT_MAX)
printf("-1\n");
else
{
int x = n-1;
while(parent[x] != -555)
{
path.push_back(x);
x = parent[x];
}
printf("1 ");
for(int i = int(path.size())-1;i >= 0;i--)
{
printf("%d ", path[i]+1);
}
printf("\n");
}
}
, , . , . - - - ( - ( )), . , , , priority_queue ( set), , .
!