Here is what I came up with. I use the same document type and index, so I optimized the code to run multiple queries with the same header:
from elasticsearch import Elasticsearch
from elasticsearch import exceptions as es_exceptions
import json
RETRY_ATTEMPTS = 10
RECONNECT_SLEEP_SECS = 0.5
def msearch(es_conn, queries, index, doc_type, retries=0):
"""
Es multi-search query
:param queries: list of dict, es queries
:param index: str, index to query against
:param doc_type: str, defined doc type i.e. event
:param retries: int, current retry attempt
:return: list, found docs
"""
search_header = json.dumps({'index': index, 'type': doc_type})
request = ''
for q in queries:
request += '{}\n{}\n'.format(search_header, json.dumps(q))
try:
resp = es_conn.msearch(body=request, index=index)
found = [r['hits']['hits'] for r in resp['responses']]
except (es_exceptions.ConnectionTimeout, es_exceptions.ConnectionError,
es_exceptions.TransportError):
logging.warning("msearch connection failed, retrying...")
if retries > RETRY_ATTEMPTS:
raise
time.sleep(RECONNECT_SLEEP_SECS)
found = msearch(queries=queries, index=index, retries=retries + 1)
except Exception as e:
logging.critical("msearch error {} on query {}".format(e, queries))
raise
return found
es_conn = Elasticsearch()
queries = []
queries.append(
{"min_score": 2.0, "query": {"bool": {"should": [{"match": {"name.tokenized": {"query": "batman"}}}]}}}
)
queries.append(
{"min_score": 1.0, "query": {"bool": {"should": [{"match": {"name.tokenized": {"query": "ironman"}}}]}}}
)
queries.append(
{"track_scores": True, "min_score": 9.0, "query":
{"bool": {"should": [{"match": {"name": {"query": "not-findable"}}}]}}}
)
q_results = msearch(es_conn, queries, index='pipeliner_current', doc_type='event')
This may be what some of you are looking for if you want to make multiple queries in the same index type and document type.
source
share