you can rotate components dateand timeindex:
Create a frame:
i =pd.to_datetime(['2015-02-20 14:00:00','2015-02-20 14:10:00','2015-02-21 14:20:00'\
,'2015-02-21 14:30:00','2015-02-22 14:40:00','2015-02-22 14:50:00'])
df =pd.DataFrame(index=i, data={'Close':[1200.1,1199.8,1199.3,1199.0,1198.4,1199.7]})
axis:
pd.pivot_table(df, index= df.index.date, columns=df.index.time, values = 'Close')
returns:
14:00:00 14:10:00 14:20:00 14:30:00 14:40:00 14:50:00
2015-02-20 1200.1 1199.8 NaN NaN NaN NaN
2015-02-21 NaN NaN 1199.3 1199 NaN NaN
2015-02-22 NaN NaN NaN NaN 1198.4 1199.7
use aggfuncas an argument pivot_tableto determine how data is aggregated if necessary