Explicit specification of variables for stochastic gradient descent

I have a problem with binary classification, define a category associated with a specific document, documents are displayed as word style vectors of a word such as a word:

Example:

Document 1 = ["I", "am", "awesome"]
Document 2 = ["I", "am", "great", "great"]

Dictionary:

["I", "am", "awesome", "great"]

So, documents in the form of a vector are as follows:

Document 1 = [1, 1, 1, 0]
Document 2 = [1, 1, 0, 2]

I want to apply a stochastic gradient descent algorithm to this input to "minimize the empirical risk associated with loop loss ."

I searched high and low to see how the stochastic gradient descent algorithm would take input in this form, but I did not find a simple and clear explanation anywhere.

This is the pseudocode from Wikipedia:

Choose an initial vector of parameters w and learning rate \alpha.
    Randomly shuffle examples in the training set.
        Repeat until an approximate minimum is obtained:
            For i=1, 2, ..., n, do:
                w := w - alpha DELTA Q_i(w)

Can someone please explain to me how the input that I work fits into this pseudocode?

, :

private List<Point2D> loadData() 
{
    List<Point2D> data = new ArrayList<>();
    data.add(new Point2D.Double(1, 2));
    data.add(new Point2D.Double(2, 3));
    data.add(new Point2D.Double(3, 4));
    data.add(new Point2D.Double(4, 5));
    data.add(new Point2D.Double(5, 6));
    data.add(new Point2D.Double(6, 7));
    return data;
}

:

 static double[] x = {2, 4, 6, 8};
 static double[] y = {2, 5, 5, 8};

, .

, , , , - , , ?

public static void perceptron(Set<String> globoDict,
   Map<String, int[]> trainingPerceptronInput,
   Map<String, int[]> testPerceptronInput)
{
    //store weights to be averaged. 
   Map<Integer,double[]> cached_weights = new HashMap<Integer,double[]>();


   final int globoDictSize = globoDict.size(); // number of features

   // weights total 32 (31 for input variables and one for bias)
   double[] weights = new double[globoDictSize + 1];
   for (int i = 0; i < weights.length; i++) 
   {
       weights[i] = 0.0;
   }


   int inputSize = trainingPerceptronInput.size();
   double[] outputs = new double[inputSize];
   final double[][] a = Prcptrn_InitOutpt.initializeOutput(trainingPerceptronInput, globoDictSize, outputs, LABEL);


   double globalError;
   int iteration = 0;
   do 
   {
       iteration++;
       globalError = 0;
       // loop through all instances (complete one epoch)
       for (int p = 0; p < inputSize; p++) 
       {
           // calculate predicted class
           double output = Prcptrn_CalcOutpt.calculateOutput(THETA, weights, a, p);
           // difference between predicted and actual class values
           //always either zero or one
           double localError = outputs[p] - output;

           int i;
           for (i = 0; i < a.length; i++) 
           {
               weights[i] += LEARNING_RATE * localError * a[i][p];
           }
           weights[i] += LEARNING_RATE * localError;

           // summation of squared error (error value for all instances)
           globalError += localError * localError;
       }

       //store weights for averaging
       cached_weights.put( iteration , weights );

       /* Root Mean Squared Error */
       System.out.println("Iteration " + iteration + " : RMSE = " + Math.sqrt(globalError / inputSize));
   } 
   while (globalError != 0 && iteration <= MAX_ITER);



   int size = globoDictSize + 1;
   //compute averages
   double[] sums = new double[size];
   double[] averages = new double[size];

   for (Entry<Integer, double[]> entry : cached_weights.entrySet()) 
   {
       double[] value = entry.getValue();
       for(int pos=0; pos < size; pos++){
           sums[ pos ] +=  value[ pos ]; 
       }
   }
   for(int pos=0; pos < size; pos++){
       averages[ pos ] = sums[ pos ] / cached_weights.size(); 
   }


   System.out.println("\n=======\nDecision boundary equation:");
   int i;
   for (i = 0; i < a.length; i++) 
   {
       System.out.print(" a");
       if (i < 10) System.out.print(0);
       System.out.println( i + " * " + weights[i] + " + " );


   }
   System.out.println(" bias: " + weights[i]);


   //TEST
   //this works because, at this point the weights have already been learned. 
   inputSize = testPerceptronInput.size();
   outputs = new double[inputSize];
   double[][] z = Prcptrn_InitOutpt.initializeOutput(testPerceptronInput, globoDictSize, outputs, LABEL); 

   test_output = Prcptrn_CalcOutpt.calculateOutput(THETA, weights, z, TEST_CLASS);       

   System.out.println("class = " + test_output);

}

+4
1

, , , , . Q. . , , w , .

0

All Articles