I have a 2-D numpy array that can be divided into 64 fields (think of a chessboard). A goal is a function that returns the position and maximum value in each field. Sort of:
FindRefs(array) --> [(argmaxX00, argmaxY00, Max00), ...,(argmaxX63, argmaxY63, Max63)]
where argmaxXnn and argmaxYnn are the indices of the entire array (not the field), and Maxnn is the maximum value in each field. In other words,
Maxnn = array[argmaxYnn,argmaxYnn]
I tried the obvious nested solution:
def FindRefs(array):
Height, Width = array.shape
plumx = []
plumy = []
lum = []
w = int(Width/8)
h = int(Height/8)
for n in range(0,8): # recorrer boxes
x0 = n*w
x1 = (n+1)*w
for m in range(0,8):
y0 = m*h
y1 = (m+1)*h
subflatind = a[y0:y1,x0:x1].argmax() # flatten index of box
y, x = np.unravel_index(subflatind, (h, w))
X = x0 + x
Y = y0 + y
lum.append(a[Y,X])
plumx.append(X)
plumy.append(Y)
refs = []
for pt in range(0,len(plumx)):
ptx = plumx[pt]
pty = plumy[pt]
refs.append((ptx,pty,lum[pt]))
return refs
It works, but is neither elegant nor efficient. So I tried this more pythonic version:
def FindRefs(a):
box = [(n*w,m*h) for n in range(0,8) for m in range(0,8)]
flatinds = [a[b[1]:h+b[1],b[0]:w+b[0]].argmax() for b in box]
unravels = np.unravel_index(flatinds, (h, w))
ur = [(unravels[1][n],unravels[0][n]) for n in range(0,len(box))]
absinds = [map(sum,zip(box[n],ur[n])) for n in range(0,len(box))]
refs = [(absinds[n][0],absinds[n][1],a[absinds[n][1],absinds[n][0]]) for n in range(0,len(box))]
return refs
It works great, but, to my surprise, is no more efficient than the previous version!
Question: is there a smarter way to complete the task?
Note that efficiency matters because I have a lot of large arrays to handle.
Any hint is welcome. :)