The algorithm for generating "anti-serial" combinations on demand from k elements from n

I am trying to implement an algorithm to get all combinations of k elements from a set of n elements, where the difference between two consecutive combinations is maximized (like reverse serocodes). In other words, you should arrange the combinations so that the elements do not appear twice in the row, and so that no element is subjected to excessive discrimination.

Ideally, the algorithm also did NOT pre-compute all the combinations and store them in memory, but rather put the combinations on demand. I searched a lot for this and found some detailed answers, such as https://stackoverflow.com/a/167508/2129 , but I cannot apply this. In addition, many articles related to this answer are paid content.

To illustrate what I mean:

From the set [0, 1, 2, 3, 4] we find all combinations of two elements. Using a simple algorithm that tries to increase the right element until it becomes possible, then, moving to the left, increasing the previous figure, etc., I get the following results:

[0, 1]
[0, 2]
[0, 3]
[0, 4]
[1, 2]
[1, 3]
[1, 4]
[2, 3]
[2, 4]
[3, 4]

I get this result with the following Java code:

public class CombinationGenerator {
    private final int mNrElements;
    private final int[] mCurrentCombination;

    public CombinationGenerator(int n, int k) {
        mNrElements = n;
        mCurrentCombination = new int[k];

        initElements(0, 0);
        // fake initial state in order not to miss first combination below
        mCurrentCombination[mCurrentCombination.length - 1]--;
    }

    private void initElements(int startPos, int startValue) {
        for (int i = startPos; i < mCurrentCombination.length; i++) {
            mCurrentCombination[i] = i + startValue - startPos;
        }
    }

    public int[] getNextCombination() {
        for (int i = 0; i < mCurrentCombination.length; i++) {
            int pos = mCurrentCombination.length - 1 - i;

            if (mCurrentCombination[pos] < mNrElements - 1 - i) {
                initElements(pos, mCurrentCombination[pos] + 1);
                return mCurrentCombination;
            }
        }

        return null;
    }

    public static void main(String[] args) {
        CombinationGenerator cg = new CombinationGenerator(5, 2);
        int[] c;

        while ((c = cg.getNextCombination()) != null) {
            System.out.println(Arrays.toString(c));
        }
    }

}

, , , . "1" , . :

[0, 1]
[2, 3]
[0, 4]
[1, 2]
[3, 4]
[0, 2]
[1, 3]
[2, 4]
[0, 3]
[1, 4]

(7.4), , , , . , k n. , , , , , , . , " " , , . , , , n > 2k. , , ..

, k = 2, .., k. , - , n , , k . , , , .

, , , , , , !

. , n <= 50, k <= 5

+4
2

@tucuxi @David Eisenstadt, , , n k, .

, , go ( ) , , . , , , . n k .

, , , , , , . tucuxi (7.4) . , n, k , -, .

.

.

public class CombinationGenerator {
    private final int N;
    private final int K;
    private final int[] mCurrentCombination;

    public CombinationGenerator(int n, int k) {
        N = n;
        K = k;
        mCurrentCombination = new int[k];

        setElementSequence(0, 0);
        mCurrentCombination[K - 1]--; // fool the first iteration
    }

    private void setElementSequence(int startPos, int startValue) {
        for (int i = startPos; i < K; i++) {
            mCurrentCombination[i] = i + startValue - startPos;
        }
    }

    public int[] getNextCombination() {
        for (int i = K - 1; i >= 0; i--) {
            if (mCurrentCombination[i] < i + N - K) {
                setElementSequence(i, mCurrentCombination[i] + 1);
                return mCurrentCombination.clone();
            }
        }

        return null;
    }   
}

public class CombinationSorter {
    private final int N;
    private final int K;

    public CombinationSorter(int n, int k) {
        N = n;
        K = k;
    }

    public List<int[]> getSortedCombinations(List<int[]> combinations) {
        List<int[]> sortedCombinations = new LinkedList<int[]>();
        int[] combination = null;
        int[] hitCounts = new int[N]; // how many times each element has been
                                      // used so far

        // Note that this modifies (empties) the input list
        while (!combinations.isEmpty()) {
            int index = findNextCombination(combinations, hitCounts, combination);
            combination = combinations.remove(index);
            sortedCombinations.add(combination);

            addHitCounts(combination, hitCounts);
        }

        return sortedCombinations;
    }

    private int findNextCombination(List<int[]> combinations, int[] hitCounts,
            int[] previousCombination) {
        int lowestHitCount = Integer.MAX_VALUE;
        int foundIndex = 0;

        // From the remaining combinations, find the one with the least used
        // elements
        for (int i = 0; i < combinations.size(); i++) {
            int[] comb = combinations.get(i);
            int hitCount = getHitCount(comb, hitCounts);

            if (hitCount < lowestHitCount) {
                lowestHitCount = hitCount;
                foundIndex = i;
            } else if (hitCount == lowestHitCount
                    && previousCombination != null
                    && getNrCommonElements(comb, previousCombination) < getNrCommonElements(
                            combinations.get(foundIndex), previousCombination)) {
                // prefer this combination if hit count is equal but it more
                // different from the previous combination in our sorted list
                // than what been found so far (avoids consecutive element
                // appearances)
                foundIndex = i;
            }
        }

        return foundIndex;
    }

    private int getHitCount(int[] combination, int[] hitCounts) {
        int hitCount = 0;

        for (int i = 0; i < K; i++) {
            hitCount += hitCounts[combination[i]];
        }

        return hitCount;
    }

    private void addHitCounts(int[] combination, int[] hitCounts) {
        for (int i = 0; i < K; i++) {
            hitCounts[combination[i]]++;
        }
    }

    private int getNrCommonElements(int[] c1, int[] c2) {
        int count = 0;

        for (int i = 0; i < K; i++) {
            for (int j = 0; j < K; j++) {
                if (c1[i] == c2[j]) {
                    count++;
                }
            }
        }
        return count;
    }
}

public class Test {
    public static void main(String[] args) {
        final int n = 7;
        final int k = 3;

        CombinationGenerator cg = new CombinationGenerator(n, k);
        List<int[]> combinations = new LinkedList<int[]>();
        int[] nc;

        while ((nc = cg.getNextCombination()) != null) {
            combinations.add(nc);
        }

        for (int[] c : combinations) {
            System.out.println(Arrays.toString(c));
        }

        System.out.println("Sorting...");

        CombinationSorter cs = new CombinationSorter(n, k);
        List<int[]> sortedCombinations = cs.getSortedCombinations(combinations);

        for (int[] sc : sortedCombinations) {
            System.out.println(Arrays.toString(sc));
        }
    }

}

(7.4):

[0, 1, 2, 3]
[0, 4, 5, 6]
[1, 2, 3, 4]
[0, 1, 5, 6]
[2, 3, 4, 5]
[0, 1, 2, 6]
[3, 4, 5, 6]
[0, 1, 2, 4]
[0, 3, 5, 6]
[1, 2, 4, 5]
[0, 1, 3, 6]
[2, 4, 5, 6]
[0, 1, 3, 4]
[2, 3, 5, 6]
[0, 1, 4, 5]
[0, 2, 3, 6]
[1, 3, 4, 5]
[0, 2, 4, 6]
[1, 2, 3, 5]
[0, 1, 4, 6]
[0, 2, 3, 5]
[1, 2, 4, 6]
[1, 3, 5, 6]
[0, 2, 3, 4]
[1, 2, 5, 6]
[0, 3, 4, 5]
[1, 2, 3, 6]
[0, 2, 4, 5]
[1, 3, 4, 6]
[0, 2, 5, 6]
[0, 1, 3, 5]
[2, 3, 4, 6]
[1, 4, 5, 6]
[0, 1, 2, 5]
[0, 3, 4, 6]

(5.2):

[0, 1]
[2, 3]
[0, 4]
[1, 2]
[3, 4]
[0, 2]
[1, 3]
[2, 4]
[0, 3]
[1, 4]
+1

, @DavidEisenstat:

public static void main(String[] args) {
    ArrayList<int[]> all = new ArrayList<int[]>();
    // output is 0 if distance(i, j) != max, and 1 otherwise
    int[][] m = buildGraph(7, 4, all);
    HamiltonianCycle hc = new HamiltonianCycle();
    int path[] = hc.findHamiltonianCycle(m);
    if (path != null) {
        // I have no proof that such a path will always exist
        for (int i : path) {
            System.out.println(Arrays.toString(all.get(i)));
        }
    }
}

(7,4); ( length - size_of_intersection) 3; 4 :

    [0, 1, 2, 3]
    [0, 4, 5, 6]
    [1, 2, 3, 4]
    [0, 1, 5, 6]
    [0, 2, 3, 4]
    [1, 2, 5, 6]
    [0, 1, 3, 4]
    [0, 2, 5, 6]
    [1, 3, 4, 5]
    [0, 1, 2, 6]
    [0, 3, 4, 5]
    [1, 2, 3, 6]
    [0, 1, 4, 5]
    [0, 2, 3, 6]
    [1, 4, 5, 6]
    [0, 2, 3, 5]
    [1, 2, 4, 6]
    [0, 3, 5, 6]
    [1, 2, 4, 5]
    [0, 3, 4, 6]
    [1, 2, 3, 5]
    [0, 2, 4, 6]
    [1, 3, 5, 6]
    [0, 2, 4, 5]
    [1, 3, 4, 6]
    [0, 1, 2, 5]
    [2, 3, 4, 6]
    [0, 1, 3, 5]
    [2, 4, 5, 6]
    [0, 1, 3, 6]
    [2, 3, 4, 5]
    [0, 1, 4, 6]
    [2, 3, 5, 6]
    [0, 1, 2, 4]
    [3, 4, 5, 6]

:

// uses JHH code to build sequences, stores it in 'all'
public static int[][] buildGraph(int n, int k, ArrayList<int[]> all) {
    SequenceGenerator sg = new SequenceGenerator(n, k);
    int[] c;
    while ((c = sg.getNextCombination()) != null) {
        all.add(c.clone());         
    }
    int best = Math.min(n-k, k);
    System.out.println("Best is " + best);
    int matrix[][] = new int[all.size()][];
    for (int i=0; i<matrix.length; i++) {
        matrix[i] = new int[all.size()];
        for (int j=0; j<i; j++) {
            int d = distance(all.get(j), all.get(i));
            matrix[i][j] = matrix[j][i] = (d != best)? 0 : 1;
        }           
    }
    return matrix;
}

: ( , )

public static int distance(int[] a, int[] b) {
        HashSet<Integer> ha = new HashSet<Integer>();
        HashSet<Integer> hb = new HashSet<Integer>();
        for (int i=0; i<a.length; i++) {
                ha.add(a[i]);
                hb.add(b[i]);
        }
        ha.retainAll(hb);
        return a.length - ha.size();
}

http://www.sanfoundry.com/java-program-find-hamiltonian-cycle-unweighted-graph/:

import java.util.Arrays;

public class HamiltonianCycle {

    private int V, pathCount;
    private int[] path;
    private int[] answer;
    private int[][] graph;

    public int[] findHamiltonianCycle(int[][] g) {
        V = g.length;
        path = new int[V];

        Arrays.fill(path, -1);
        graph = g;
        path[0] = 0;
        pathCount = 1;
        if (solve(0)) {
            return path;
        } else {
            return null;
        }
    }

    public boolean solve(int vertex) {
        if (graph[vertex][0] == 1 && pathCount == V) {
            return true;
        }
        if (pathCount == V) {
            return false;
        }

        for (int v = 0; v < V; v++) {
            if (graph[vertex][v] == 1) {
                path[pathCount++] = v;
                graph[vertex][v] = 0;
                graph[v][vertex] = 0;

                if (!isPresent(v)) {
                    if (solve(v)) {
                        answer = path.clone();
                        return true;
                    }
                }

                graph[vertex][v] = 1;
                graph[v][vertex] = 1;
                path[--pathCount] = -1;
            }
        }
        return false;
    }

    public boolean isPresent(int v) {
        for (int i = 0; i < pathCount - 1; i++) {
            if (path[i] == v) {
                return true;
            }
        }
        return false;
    }
}

: ...

+2

All Articles