.
mod .
Inductive mod_rel : nat -> nat -> nat -> Prop :=
| mod_rel_1 : forall n1 n2, n2 = 0 -> mod_rel n1 n2 0
| mod_rel_2 : forall n1 n2, n2 > 0 -> n1 < n2 -> mod_rel n1 n2 n1
| mod_rel_3 : forall n1 n2 n3, n2 > 0 -> n1 >= n2 -> mod_rel (n1 - n2) n2 n3 -> mod_rel n1 n2 n3.
, undefined.
, , , , , , .
mod.
Inductive mod_dom : nat -> nat -> Prop :=
| mod_dom_1 : forall n1 n2, n2 = 0 -> mod_dom n1 n2
| mod_dom_2 : forall n1 n2, n2 > 0 -> n1 < n2 -> mod_dom n1 n2
| mod_dom_3 : forall n1 n2, n2 > 0 -> n1 >= n2 -> mod_dom (n1 - n2) n2 -> mod_dom n1 n2.
Coq , mod.
.
Conjecture wf_ind : forall P1, (forall n1, (forall n2, n2 < n1 -> P1 n2) -> P1 n1) -> forall n1, P1 n1.
Conjecture O_gt : forall n1, n1 = 0 \/ n1 > 0.
Conjecture lt_ge : forall n1 n2, n1 < n2 \/ n1 >= n2.
Conjecture mod_total : forall n1 n2, mod_dom n1 n2.
, mod,
Check mod_dom_ind : forall P1 : nat -> nat -> Prop,
(forall n1 n2, n2 = 0 -> P1 n1 n2) ->
(forall n1 n2, n2 > 0 -> n1 < n2 -> P1 n1 n2) ->
(forall n1 n2, n2 > 0 -> n1 >= n2 -> mod_dom (n1 - n2) n2 -> P1 (n1 - n2) n2 -> P1 n1 n2) ->
forall n1 n2, mod_dom n1 n2 -> P1 n1 n2.
mod ,
Conjecture mod_ind : forall P1 : nat -> nat -> Prop,
(forall n1 n2, n2 = 0 -> P1 n1 n2) ->
(forall n1 n2, n2 > 0 -> n1 < n2 -> P1 n1 n2) ->
(forall n1 n2, n2 > 0 -> n1 >= n2 -> P1 (n1 - n2) n2 -> P1 n1 n2) ->
forall n1 n2, P1 n1 n2.
.
mod, mod.
mod , , - mod.
.
, , - , .
, , , .
.
n3 n4 . , , , reset . , ( , ).
Conjecture ltb : nat -> nat -> bool.
Fixpoint div_mod (n1 n2 n3 n4 : nat) : nat * nat :=
match n1 with
| 0 => (n3, n4)
| S n1 => if ltb (S n4) n2
then div_mod n1 n2 n3 (S n4)
else div_mod n1 n2 (S n3) 0
end.
Definition div (n1 n2 : nat) : nat := fst (div_mod n1 n2 0 0).
Definition mod (n1 n2 : nat) : nat := snd (div_mod n1 n2 0 0).
, - div mod. , - div_mod.
(-) .
Theorem augmented_division_algorithm : forall n1 n2 n3 n4, n4 < n2 ->
exists n5 n6, n1 + n3 * n2 + n4 = n5 * n2 + n6 /\ n6 < n2.
Proof.
induction n1.
firstorder.
exists n3.
exists n4.
firstorder.
firstorder.
destruct (lt_ge (S n4) n2).
specialize (IHn1 n2 n3 (S n4) H0).
firstorder.
exists x.
exists x0.
firstorder.
admit. (* H1 implies the conclusion. *)
Conjecture C2 : forall n1 n2, n1 < n2 -> 0 < n2.
pose proof (C2 _ _ H).
specialize (IHn1 n2 (S n3) 0).
firstorder.
exists x.
exists x0.
firstorder.
Conjecture C3 : forall n1 n2, n1 < n2 -> S n1 >= n2 -> S n1 = n2.
pose proof (C3 _ _ H H0).
subst.
cbn in *.
admit. (* H2 implies the conclusion. *)
Qed.
, n3 n4 .
Conjecture division_algorithm : forall n1 n2, 0 < n2 -> exists n5 n6,
n1 = n5 * n2 + n6 /\ n6 < n2.
Disclaimer: hypotheses and simply typed functions.