Python nested list

I have a list comprehension. I'm trying to get my head, and I just can’t understand what I need, and I thought that I would see if anyone else knew!

My main data structure is this:

structure = [[np.array([[1,2,3],[4,5,6]]), np.array([[7,8,9],[10,11,12]])], [np.array([[13,14,15],[16,17,18]]), np.array([[19,20,21],[22,23,24]])]]

So, I have a generic list containing sublists of numpy arrays, and my desired result is some sort of grouping (it doesn't matter if it is a list or an array) with the following elements in pairs:

[1, 13]
[4, 16]
[2, 14]
[5, 17]
[3, 15]
[6, 18]

I thought I would get this with the following style construct:

output = [structure[i][0][j] for j in range(9) for i in range(len(structure))]but, alas, there is no joy.

In fact, I do not mind if he needs more than one step - I just want to combine these elements!

(like a little background - I have lists of probabilities inferred from different models, and in these models I have a list of workouts and a checklist:

[[model_1], [model_2], ..., [model_n]]

where [model_1]-[[training_set], [validation_set], [test_set]]

and [training_set]havenp.array([p_1, p_2, ..., p_n],[p_1, p_2, ..., p_n],...])

1 , , . , [training_set].

, !

+4
4

, , :

imort numpy as np

structure = [[np.array([[1, 2, 3], [4, 5, 6]]), np.array([[7, 8, 9], [10, 11, 12]])],
             [np.array([[13, 14, 15], [16, 17, 18]]), np.array([[19, 20, 21], [22, 23, 24]])]]

from itertools import chain

zipped = (zip(*ele) for ele in zip(*next(zip(*structure))))

print (list(chain.from_iterable(zip(*zipped))))
[(1, 13), (4, 16), (2, 14), (5, 17), (3, 15), (6, 18)]

, :

# transpose sub arrays so column 0 is the first two sub elements from 
# each sub array
In [4]: start = zip(*structure)

In [5]: start
Out[5]: 
[(array([[1, 2, 3],
         [4, 5, 6]]), array([[13, 14, 15],
         [16, 17, 18]])), (array([[ 7,  8,  9],
         [10, 11, 12]]), array([[19, 20, 21],
         [22, 23, 24]]))]

# our interesting sub array i.e colunm[0]
In [6]: first_col = next(start)

In [7]: first_col
Out[7]: 
(array([[1, 2, 3],
        [4, 5, 6]]), array([[13, 14, 15],
        [16, 17, 18]]))

# pair up corresponding sub array's
In [8]: intersting_pairs = zip(*first_col)

In [9]: intersting_pairs
Out[9]: 
[(array([1, 2, 3]), array([13, 14, 15])),
 (array([4, 5, 6]), array([16, 17, 18]))]

# pair them up (1, 13), (2, 14) ...
In [10]: create_final_pairings = [zip(*ele) for ele in intersting_pairs]

In [11]: create_final_pairings
Out[11]: [[(1, 13), (2, 14), (3, 15)], [(4, 16), (5, 17), (6, 18)]]

, :

In [13]: from itertools import chain
# create flat list 
In [14]: flat_list = list(chain.from_iterable(zip(*create_final_pairings))

In [15]: flat_list
Out[15]: [(1, 13), (4, 16), (2, 14), (5, 17), (3, 15), (6, 18)]

zip :

In [17]: l = [[1,2,3],[4,5,6]]

In [18]: zip(*l)
Out[18]: [(1, 4), (2, 5), (3, 6)]

In [19]: zip(*l)[0]
Out[19]: (1, 4)

In [20]: zip(*l)[1]
Out[20]: (2, 5)

In [21]: zip(*l)[2]
Out[21]: (3, 6)

python2 itertools.izip:

from itertools import chain, izip


zipped = (izip(*ele) for ele in izip(*next(izip(*structure))))
print (list(chain.from_iterable(izip(*zipped))))

[(1, 13), (4, 16), (2, 14), (5, 17), (3, 15), (6, 18)]
+2

( ) structure , :

In [189]: A=np.array(structure)
Out[189]: 
array([[[[ 1,  2,  3],
         [ 4,  5,  6]],

        [[ 7,  8,  9],
         [10, 11, 12]]],


       [[[13, 14, 15],
         [16, 17, 18]],

        [[19, 20, 21],
         [22, 23, 24]]]])

In [190]: A.shape
Out[190]: (2, 2, 2, 3)

swapaxes .

, :

In [194]: A[:,0,:,:]
Out[194]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],

       [[13, 14, 15],
        [16, 17, 18]]])

,

In [197]: A[:,0,:,:].reshape(2,6)
Out[197]: 
array([[ 1,  2,  3,  4,  5,  6],
       [13, 14, 15, 16, 17, 18]])

, 6 :

In [198]: A[:,0,:,:].reshape(2,6).T
Out[198]: 
array([[ 1, 13],
       [ 2, 14],
       [ 3, 15],
       [ 4, 16],
       [ 5, 17],
       [ 6, 18]])

1,4,2,5..,

In [208]: A[:,0,:,:].T.reshape(6,2)
Out[208]: 
array([[ 1, 13],
       [ 4, 16],
       [ 2, 14],
       [ 5, 17],
       [ 3, 15],
       [ 6, 18]])
+3

, , :

new_training_vector = []
for m1, m2 in zip(structure[0], structure[1]):
    for t1, t2 in zip(m1, m2):
        for d1, d2 in zip(t1, t2):
            new_training_vector.append([d1, d2])

, ( zip), , .., .

, :

new_training_vector = [[d1, d2]
                       for m1, m2 in zip(structure[0], structure[1])
                       for t1, t2 in zip(m1, m2)
                       for d1, d2 in zip(t1, t2)]

, - . :

import collections
d = collections.defaultdict(list)
for model in structure:
    for i, training_set in enumerate(model):
        for j, row in enumerate(training_set):
            for k, point in enumerate(row):
                d[(i, j, k)].append(point)

The trick with this is that we simply track where we saw each point (except for the model level), so they automatically go to the same element dict.

+2
source

I think this is what you want, as the format you have, it uses generators:

import numpy as np
structure = [[np.array([[1,2,3],[4,5,6]]), np.array([[7,8,9],[10,11,12]])], [np.array([[13,14,15],[16,17,18]]), np.array([[19,20,21],[22,23,24]])]]
struc = structure

my_gen = ([struc[i][j][k][l], struc[i+1][j][k][l]] for i in range(len(struc)-1)
                                     for j in range(len(struc[i]))
                                     for k in range(len(struc[i][j]))
                                     for l in range(len(struc[i][j][k])))

try:
    val = my_gen.next()
    while val != None:
        print val
        val = my_gen.next()
except:
    pass

code>

0
source

All Articles