You basically reinvent the indexing scheme of a multidimensional array. It is relatively easy to code, but you can use the two functions unravel_indexand ravel_multi_indexto your advantage.
If your grid has columns Mand columns Nto get idxand idyone item that you could do:
>>> M, N = 12, 10
>>> np.unravel_index(4, dims=(M, N))
(0, 4)
This also works if, instead of a single index, you provide an array of indexes:
>>> np.unravel_index([15, 28, 32, 97], dims=(M, N))
(array([1, 2, 3, 9], dtype=int64), array([5, 8, 2, 7], dtype=int64))
So, if it cellshas multiple cell indices, you want to find neighbors:
>>> cells = np.array([15, 28, 32, 44, 87])
You can get your neighbors as:
>>> idy, idx = np.unravel_index(cells, dims=(M, N))
>>> neigh_idx = np.vstack((idx-1, idx+1, idx, idx))
>>> neigh_idy = np.vstack((idy, idy, idy-1, idy+1))
>>> np.ravel_multi_index((neigh_idy, neigh_idx), dims=(M,N))
array([[14, 27, 31, 43, 86],
[16, 29, 33, 45, 88],
[ 5, 18, 22, 34, 77],
[25, 38, 42, 54, 97]], dtype=int64)
Or, if you prefer it like this:
>>> np.ravel_multi_index((neigh_idy, neigh_idx), dims=(M,N)).T
array([[14, 16, 5, 25],
[27, 29, 18, 38],
[31, 33, 22, 42],
[43, 45, 34, 54],
[86, 88, 77, 97]], dtype=int64)
: ravel_multi_index mode, , . .