How to convert numpy array to pandas framework?
eg:
test = np.array([[1,2],[2,3]]) test2 = np.array([[2,4],[2,5]])
:
pd.DataFrame({'test':[[1,2],[2,3]], 'test2':[[2,4],[2,5]]}) test test2 0 [1, 2] [2, 4] 1 [2, 3] [2, 5]
Although you can use
In [85]: pd.DataFrame({'test':test.tolist(), 'test2':test2.tolist()}) Out[85]: test test2 0 [1, 2] [2, 4] 1 [2, 3] [2, 5]
computing on NumPy arrays is likely to be much faster than equivalent computing done on a Pandas DataFrame whose columns contain Python lists.
If these numpy arrays are the same length, then Panel might be preferable:
In [11]: p = pd.Panel({"test": test, "test2": test2}) In [12]: p Out[12]: <class 'pandas.core.panel.Panel'> Dimensions: 2 (items) x 2 (major_axis) x 2 (minor_axis) Items axis: test to test2 Major_axis axis: 0 to 1 Minor_axis axis: 0 to 1 In [13]: p["test"] # a DataFrame Out[13]: 0 1 0 1 2 1 2 3