, , . , , , , : ( , ).
( "nlevels - 1" ) , () . ( , .
, , mtcars () . , , ( , ).
df = mtcars # copy the dataset
df$gear = as.ordered(df$gear) # make an ordered factor
, :
contrasts(df$gear) <- contr.poly(nlevels(df$gear))
.
m1 = lm(mpg ~ gear, data = df);
summary.lm(m1)
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 20.6733 0.9284 22.267 < 2e-16 ***
# gear.L 3.7288 1.7191 2.169 0.03842 *
# gear.Q -4.7275 1.4888 -3.175 0.00353 **
#
# Multiple R-squared: 0.4292, Adjusted R-squared: 0.3898
# F-statistic: 10.9 on 2 and 29 DF, p-value: 0.0002948
, F (2,29) = 10,9 p = 0,38 3,7 /.
" " .
contrasts(df$gear, how.many = 1) <- contr.poly(nlevels(df$gear))
m1 = lm(mpg ~ gear, data = df)
summary.lm(m1)
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 21.317 1.034 20.612 <2e-16 ***
# gear.L 5.548 1.850 2.999 0.0054 **
# Multiple R-squared: 0.2307, Adjusted R-squared: 0.205
# F-statistic: 8.995 on 1 and 30 DF, p-value: 0.005401
(5,5 ) p <.05 - ? , : 23% ( 43%)! , :
plot(mpg ~ gear, data = df) # view the relationship

, , ( ) , . (, , -1).
, : , , .
- , 4 , 3, : -)