- NaNs data. 2D X, Y:
X, Y = np.indices(data.shape)
mask = ~np.isnan(data)
x = X[mask]
y = Y[mask]
data = data[mask]
optimize.leastsq ( , optimize.curve_fit)
:
p, success = optimize.leastsq(errorfunction, params, args=(x, y, data))
, data NaNs
data = make_data(shape)
import matplotlib.pyplot as plt
plt.imshow(data)
plt.show()

, , NaN,
import numpy as np
from scipy import optimize
np.set_printoptions(precision=4)
def gaussian(p, x, y):
height, center_x, center_y, width_x, width_y = p
return height*np.exp(-(((center_x-x)/width_x)**2+((center_y-y)/width_y)**2)/2)
def moments(data):
total = np.nansum(data)
X, Y = np.indices(data.shape)
center_x = np.nansum(X*data)/total
center_y = np.nansum(Y*data)/total
row = data[int(center_x), :]
col = data[:, int(center_y)]
width_x = np.nansum(np.sqrt(abs((np.arange(col.size)-center_y)**2*col))
/np.nansum(col))
width_y = np.nansum(np.sqrt(abs((np.arange(row.size)-center_x)**2*row))
/np.nansum(row))
height = np.nanmax(data)
return height, center_x, center_y, width_x, width_y
def errorfunction(p, x, y, data):
return gaussian(p, x, y) - data
def fitgaussian(data):
params = moments(data)
X, Y = np.indices(data.shape)
mask = ~np.isnan(data)
x = X[mask]
y = Y[mask]
data = data[mask]
p, success = optimize.leastsq(errorfunction, params, args=(x, y, data))
return p
def make_data(shape):
h, w = shape
p = 50, h/2.0, w/2.0, h/3.0, w/5.0
print('Actual parameters: {}'.format(np.array(p)))
X, Y = np.indices(shape)
data = gaussian(p, X, Y) + np.random.random(shape)
mask = np.random.random(shape) < 0.3
data[mask] = np.nan
return data
shape = 100, 200
data = make_data(shape)
X, Y = np.indices(shape)
parameters = fitgaussian(data)
print('Fitted parameters: {}'.format(parameters))
fit = gaussian(parameters, X, Y)
Actual parameters: [ 50. 50. 100. 33.3333 40. ]
Fitted parameters: [ 50.2908 49.9992 99.9927 33.7039 40.6149]