How to get the number of components needed in ATP, with all extreme deviations?

I am trying to get the number of components that need to be used for classification. I read a similar question Finding the largest variance size using scikit-learn PCA and scikit docs about it:

http://scikit-learn.org/dev/tutorial/statistical_inference/unsupervised_learning.html#principal-component-analysis-pca

However, this has not yet resolved my question. All my PCA components are very large, and I can select all of them, but if I do, the PCA will be useless.

I also read the PCA library at scikit learn http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html It indicates that L:

if n_components == 'mle, Minkas MLE is used to guess the dimension, if 0 <n_components <1, select the number of components such that the variance that should be explained is greater than the percentage indicated by n_components

However, I can not find more information about using these methods to analyze the n_components of the PCA

Here is my PCA analysis code:

from sklearn.decomposition import PCA
    pca = PCA()
    pca.fit(x_array_train)
    print(pca.explained_variance_)

result:

   [  6.58902714e+50   6.23266555e+49   2.93568652e+49   2.25418736e+49
       1.10063872e+49   3.25107359e+40   4.72113817e+39   1.40411862e+39
       4.03270198e+38   1.60662882e+38   3.20028861e+28   2.35570241e+27
       1.54944915e+27   8.05181151e+24   1.42231553e+24   5.05155955e+23
       2.90909468e+23   2.60339206e+23   1.95672973e+23   1.22987336e+23
       9.67133111e+22   7.07208772e+22   4.49067983e+22   3.57882593e+22
       3.03546737e+22   2.38077950e+22   2.18424235e+22   1.79048845e+22
       1.50871735e+22   1.35571453e+22   1.26605081e+22   1.04851395e+22
       8.88191944e+21   6.91581346e+21   5.43786989e+21   5.05544020e+21
       4.33110823e+21   3.18309135e+21   3.06169368e+21   2.66513522e+21
       2.57173046e+21   2.36482212e+21   2.32203521e+21   2.06033130e+21
       1.89039408e+21   1.51882514e+21   1.29284842e+21   1.26103770e+21
       1.22012185e+21   1.07857244e+21   8.55143095e+20   4.82321416e+20
       2.98301261e+20   2.31336276e+20   1.31712446e+20   1.05253795e+20
       9.84992112e+19   8.27574150e+19   4.66007620e+19   4.09687463e+19
       2.89855823e+19   2.79035170e+19   1.57015298e+19   1.39218538e+19
       1.00594159e+19   7.31960049e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.29043685e+18   5.29043685e+18   5.29043685e+18
       5.29043685e+18   5.24952686e+18   2.09685699e+18   4.16588190e+17]

I tried PCA (n_components = 'mle'), however I got these errors.

    Traceback (most recent call last):
  File "xx", line 166, in <module>
    pca.fit(x_array_train)
  File "xx", line 225, in fit
    self._fit(X)
  File "/Users/lib/python2.7/site-packages/sklearn/decomposition/pca.py", line 294, in _fit
    n_samples, n_features)
  File "/Users/lib/python2.7/site-packages/sklearn/decomposition/pca.py", line 98, in _infer_dimension_
    ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features)
  File "/Users/lib/python2.7/site-packages/sklearn/decomposition/pca.py", line 83, in _assess_dimension_
    (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples)
ValueError: math domain error

Really appreciate the help ...

+4
source share
3 answers

I do not use Python, but I did something necessary in C++and opencv. Hope you can convert it to any language.

// choose how many eigenvectors you want:
int nEigensOfInterest = 0;
float sum = 0.0;
for (int i = 0; i < mEiVal.rows; ++i)
{
    sum += mEiVal.at<float>(i, 0);
    if (((sum * 100) / (sumOfEigens)) > 80)
    {
        nEigensOfInterest = i;
        break;
    }
}
logfile << "No of Eigens of interest: " << nEigensOfInterest << std::endl << std::endl;

, , "%" . , 80. mEiVal - , . sumOfEigens - .

scikit-learn, , , .

+4

, , 0 < n_components < 1 , n_components, , 0,85, , , 85% . , sum(pca.explained_variance_). 0,85 ( , ), .

, , 70% - 90% - .

+2

pca. . Google .

0
source

All Articles