I have the following grouped data frame, and I would like to use a function dplyr::sample_nto extract rows from this data frame for each group. I want to use the value of a grouped variable NDGin each group as the number of rows to extract from each group.
> dg.tmp <- structure(list(Gene = c("CAMK1", "GHRL", "TIMP4", "CAMK1", "GHRL",
"TIMP4", "ARL8B", "ARPC4", "SEC13", "ARL8B", "ARPC4", "SEC13"
), GLB = c(3, 3, 3, 3, 3, 3, 10, 10, 10, 10, 10, 10), NDG = c(1,
1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2)), class = c("tbl_df", "tbl",
"data.frame"), row.names = c(NA, -12L), .Names = c("Gene", "GLB",
"NDG"))
> dg <- dg.tmp %>%
dplyr::group_by(GLB,NDG)
> dg
Source: local data frame [12 x 3]
Groups: GLB, NDG
Gene GLB NDG
1 A4GNT 3 1
2 ABTB1 3 1
3 AHSG 3 1
4 A4GNT 3 2
5 ABTB1 3 2
6 AHSG 3 2
7 AADAC 10 1
8 ABHD14B 10 1
9 ACVR2B 10 1
10 AADAC 10 2
11 ABHD14B 10 2
12 ACVR2B 10 2
For example, assuming the right random choice, I want the code
> dg %>% dplyr::sample_n(NDG)
for output:
Source: local data frame [6 x 3]
Groups: GLB, NDG
Gene GLB NDG
1 A4GNT 3 1
2 A4GNT 3 2
3 ABTB1 3 2
4 AADAC 10 1
5 AADAC 10 2
6 ABHD14B 10 2
However, it gives the following error:
Error in eval(expr, envir, enclos) : object 'NDG' not found
For comparison, dplyr::sliceit gives the correct output when I use the code
> dg %>% dplyr::slice(1:unique(NDG))
In this context, it is a bit hacked unique, however using code
> dg %>% dplyr::slice(1:NDG)
returns the following warning messages
Warning messages:
1: In slice_impl(.data, dots) :
numerical expression has 3 elements: only the first used
2: In slice_impl(.data, dots) :
numerical expression has 3 elements: only the first used
3: In slice_impl(.data, dots) :
numerical expression has 3 elements: only the first used
4: In slice_impl(.data, dots) :
numerical expression has 3 elements: only the first used
NDG ( ) c(1,1,1) c(2,2,2), , , 1:NDG .
, , , , sample_n.grouped_df,
sample_n.grouped_df <- function(tbl, size, replace = FALSE, weight = NULL,
.env = parent.frame()) {
assert_that(is.numeric(size), length(size) == 1, size >= 0)
weight <- substitute(weight)
index <- attr(tbl, "indices")
sampled <- lapply(index, sample_group, frac = FALSE,
tbl = tbl, size = size, replace = replace, weight = weight, .env = .env)
idx <- unlist(sampled) + 1
grouped_df(tbl[idx, , drop = FALSE], vars = groups(tbl))
}
Github. , , sample_n.grouped_df NGD, .
, sample_n dg
Source: local data frame [6 x 3]
Groups: GLB, NDG
Gene GLB NDG
1 A4GNT 3 1
2 A4GNT 3 2
3 ABTB1 3 2
4 AADAC 10 1
5 AADAC 10 2
6 ABHD14B 10 2
?