Closed blocks and memory locks (C ++)

I have an implementation spin lock:

class Spinlock {
public:
    void Lock() {
        while (true) {
            if (!_lock.test_and_set(std::memory_order_acquire)) {
                return;
            }
        }
    }

    void Unlock() {
        _lock.clear(std::memory_order_release);
    }

private:
    std::atomic_flag _lock;
};

I use the SpinLock class in:

class SpinlockedStack {
public:
    SpinlockedStack() : _head(nullptr) {
    }

    ~SpinlockedStack() {
        while (_head != nullptr) {
            Node* node = _head->Next;
            delete _head;
            _head = node;
        }
    }

    void Push(int value) {
        _lock.Lock();
        _head = new Node(value, _head);
        _lock.Unlock();
    }

    bool TryPop(int& value) {
        _lock.Lock();

        if (_head == nullptr) {
            value = NULL;
            _lock.Unlock();
            return false;
        }

        Node* node = _head;
        value = node->Value;
        _head = node->Next;

        delete node;

        _lock.Unlock();

        return true;
    }

private:
    struct Node {
        int Value;
        Node* Next;

        Node(int value, Node* next) : Value(value), Next(next) {
        }
    };

    Node* _head;
    Spinlock _lock;
};

I understand that I have to interfere with memory barriers. I can use atomic variables:

struct Node {
    int Value;
    std::atomic<Node*> Next;

    Node(int value) : Value(value) {
    }
};

std::atomic<Node*> _head;
Spinlock _lock;
...

void Push(int value) {
    _lock.Lock();

    Node* currentHead = _head.load(std::memory_order_acquire);

    Node* newHead = new Node(value);
    newHead->Next.store(currentHead, std::memory_order_relaxed);

    _head.store(newHead, std::memory_order_release);

    _lock.Unlock();
}

bool TryPop(int& value) {
    _lock.Lock();

    Node* currentHead = _head.load(std::memory_order_acquire);

    if (currentHead == nullptr) {
        value = NULL;
        _lock.Unlock();
        return false;
    }

    value = currentHead->Value;
    _head.store(currentHead->Next.load(std::memory_order_relaxed), std::memory_order_release);

    delete currentHead;

    _lock.Unlock();

    return true;
}

I can also use atomic_thread_fence ():

struct Node {
    int Value;
    Node* Next;

    Node(int value) : Value(value) {
    }
};

Node* _head;
Spinlock _lock;

...

void Push(int value) {
    _lock.Lock();

    Node* currentHead = _head;

    std::atomic_thread_fence(std::memory_order_acquire);

    Node* newHead = new Node(value);

    newHead->Next = currentHead;

    std::atomic_thread_fence(std::memory_order_release);

    _head = newHead;

    _lock.Unlock();
}

bool TryPop(int& value) {
    _lock.Lock();

    std::atomic_thread_fence(std::memory_order_acquire);

    Node* currentHead = _head;

    if (currentHead == nullptr) {
        value = NULL;
        _lock.Unlock();
        return false;
    }

    value = currentHead->Value;

    std::atomic_thread_fence(std::memory_order_acquire);

    Node* nextNead = currentHead->Next;

    std::atomic_thread_fence(std::memory_order_release);

    _head = nextNead;

    delete currentHead;

    _lock.Unlock();

    return true;
}

My questions:

  • Do I put memory barriers?
  • What is better to use in this case (atomic variables or atomic_thread_fence) and why?
+4
source share
1 answer

Purchasing a lock already establishes the required memory guarantees.

, . , , , , , , .

- RAII, , .

ATOMIC_FLAG_INIT, undefined.

+1

All Articles