, jterrace, np.in1d np.setdiff1d:
import numpy as np
np.random.seed(2015)
m, n = 10, 5
A = np.random.randint(10, size=(m,3))
B = A[np.random.choice(m, n, replace=False)]
print(A)
print(B)
def using_view(A, B, assume_unique=False):
Ad = np.ascontiguousarray(A).view([('', A.dtype)] * A.shape[1])
Bd = np.ascontiguousarray(B).view([('', B.dtype)] * B.shape[1])
return ~np.in1d(Ad, Bd, assume_unique=assume_unique)
print(using_view(A, B, assume_unique=True))
[False True True True False False False False True True]
assume_unique=True ( ),
A B .
, A.view(...)
ValueError: new type not compatible with array.
A.flags['C_CONTIGUOUS'] - False (.. A C- ).
np.ascontiguous(A) view.
B.M. , "void"
DTYPE:
def using_void(A, B):
dtype = 'V{}'.format(A.dtype.itemsize * A.shape[-1])
Ad = np.ascontiguousarray(A).view(dtype)
Bd = np.ascontiguousarray(B).view(dtype)
return ~np.in1d(Ad, Bd, assume_unique=True)
dtypes. ,
In [342]: np.array([-0.], dtype='float64').view('V8') == np.array([0.], dtype='float64').view('V8')
Out[342]: array([False], dtype=bool)
np.in1d , void
.
:
import numpy as np
np.random.seed(2015)
m, n = 10000, 5000
A = np.random.randint(10, size=(2*m,3))
A = A[::2]
B = A[np.random.choice(m, n, replace=False)]
def using_view(A, B, assume_unique=False):
Ad = np.ascontiguousarray(A).view([('', A.dtype)] * A.shape[1])
Bd = np.ascontiguousarray(B).view([('', B.dtype)] * B.shape[1])
return ~np.in1d(Ad, Bd, assume_unique=assume_unique)
from scipy.spatial import distance
def using_distance(A, B):
return ~np.any(distance.cdist(A,B)==0,1)
from functools import reduce
def using_loop(A, B):
pred = lambda i: A[:, i:i+1] == B[:, i]
return ~reduce(np.logical_and, map(pred, range(A.shape[1]))).any(axis=1)
from pandas.core.groupby import get_group_index, _int64_overflow_possible
from functools import partial
def using_pandas(A, B):
shape = [1 + max(A[:, i].max(), B[:, i].max()) for i in range(A.shape[1])]
assert not _int64_overflow_possible(shape)
encode = partial(get_group_index, shape=shape, sort=False, xnull=False)
a1, b1 = map(encode, (A.T, B.T))
return ~np.in1d(a1, b1)
def using_void(A, B):
dtype = 'V{}'.format(A.dtype.itemsize * A.shape[-1])
Ad = np.ascontiguousarray(A).view(dtype)
Bd = np.ascontiguousarray(B).view(dtype)
return ~np.in1d(Ad, Bd)
for func in (using_distance, using_loop, using_pandas, using_void):
assert (func(A, B) == using_view(A, B)).all()
In [384]: %timeit using_pandas(A, B)
100 loops, best of 3: 1.99 ms per loop
In [381]: %timeit using_void(A, B)
100 loops, best of 3: 6.72 ms per loop
In [378]: %timeit using_view(A, B)
10 loops, best of 3: 35.6 ms per loop
In [383]: %timeit using_loop(A, B)
1 loops, best of 3: 342 ms per loop
In [379]: %timeit using_distance(A, B)
1 loops, best of 3: 502 ms per loop