, x, y, . .
:
library(ggmap)
library(data.table)
map <- get_map(location = "austin", zoom = 12)
data <- setDT(read.csv(file.choose(), stringsAsFactors = FALSE))
data[, average_rate_per_night := as.numeric(gsub(",", "",
substr(average_rate_per_night, 2, nchar(average_rate_per_night))))]
xbreaks <- seq(floor(min(data$latitude)), ceiling(max(data$latitude)), by = 0.01)
ybreaks <- seq(floor(min(data$longitude)), ceiling(max(data$longitude)), by = 0.01)
data$latbin <- xbreaks[cut(data$latitude, breaks = xbreaks, labels=F)]
data$longbin <- ybreaks[cut(data$longitude, breaks = ybreaks, labels=F)]
datamat <- data[, list(average_rate_per_night = mean(average_rate_per_night)),
by = c("latbin", "longbin")]
datamat <- merge(setDT(expand.grid(latbin = xbreaks, longbin = ybreaks)), datamat,
by = c("latbin", "longbin"), all.x = TRUE, all.y = FALSE)
datamat[is.na(average_rate_per_night), ]$average_rate_per_night <- 0
ggmap(map, extent = "device") +
stat_contour(data = datamat, aes(x = longbin, y = latbin, z = average_rate_per_night,
fill = ..level.., alpha = ..level..), geom = 'polygon', binwidth = 100) +
scale_fill_gradient(name = "Price", low = "green", high = "red") +
guides(alpha = FALSE)

, , , .