I'm having problems with data transmission on forecast.lmin dplyr do. I want to make several models based on the coefficient - hour- and predict these models using new data.
Based on previous excellent examples, an example of my data is given:
require(dplyr)
require(forecast)
df.h <- data.frame(
hour = factor(rep(1:24, each = 100)),
price = runif(2400, min = -10, max = 125),
wind = runif(2400, min = 0, max = 2500),
temp = runif(2400, min = - 10, max = 25)
)
df.f <- data.frame(
hour = factor(rep(1:24, each = 10)),
wind = runif(240, min = 0, max = 2500),
temp = runif(240, min = - 10, max = 25)
)
df <- rbind(df.h, data.frame(df.f, price=NA))
df <- rbind(df.h, data.frame(df.f, price=NA))
res <- group_by(df, hour) %>% do({
hist <- .[!is.na(.$price), ]
fore <- .[is.na(.$price), c('hour', 'wind', 'temp')]
fit <- Arima(hist$price, xreg = hist[,3:4], order = c(1,1,0))
data.frame(fore[], price=forecast.Arima(fit, xreg = fore[ ,2:3])$mean)
})
res
This works great with a time series model, but with the help lmof me I have a problem with transferring data to the forecasting part.
My relevant example is lmas follows:
res <- group_by(df, hour) %>% do({
hist <- .[!is.na(.$price), ]
fore <- .[is.na(.$price), c('hour', 'wind', 'temp')]
fit <- lm(hist$price ~ wind + temp, data = hist)
data.frame(fore[], price = forecast.lm(fit, newdata = fore[, 2:3])$mean)
})
, newdata =. hist$ , , - , data = fore, , .