You can use the warm start parameter RandomForestClassifier to do just that.
Here is an example that you can adapt to your specific needs:
errors = [] growing_rf = RandomForestClassifier(n_estimators=10, n_jobs=-1, warm_start=True, random_state=1514) for i in range(40): growing_rf.fit(X_train, y_train) growing_rf.n_estimators += 10 errors.append(log_loss(y_valid, growing_rf.predict_proba(X_valid))) _ = plt.plot(errors, '-r')
Here is what I got:

source share