You can use data.table to get the sequence from dates from 'created_at' to '2015-07-12', grouped by column "ID".
library(data.table) setDT(df1)[, list(date=seq(created_at, as.Date('2015-07-12'), by='1 day')) , ID]
If you need an option with dplyr , use do
library(dplyr) df1 %>% group_by(ID) %>% do( data.frame(., Date= seq(.$created_at, as.Date('2015-07-12'), by = '1 day')))
If you have duplicate identifiers, we might need the row_number() group
df1 %>% group_by(rn=row_number()) %>% do(data.frame(ID= .$ID, Date= seq(.$created_at, as.Date('2015-07-12'), by = '1 day'), stringsAsFactors=FALSE))
Update
Based on @Frank commment, the new idiom for tidyverse is
library(tidyverse) df1 %>% group_by(ID) %>% mutate(d = list(seq(created_at, as.Date('2015-07-12'), by='1 day')), created_at = NULL) %>% unnest()
In case of data.table
setDT(df1)[, list(date=seq(created_at, as.Date('2015-07-12'), by = '1 day')), by = 1:nrow(df1)]
data
df1 <- structure(list(ID = c("MUM-0001", "MUM-0002", "MUM-0003", "MUM-0004", "MUM-0005", "MUM-0006"), created_at = structure(c(16176, 16084, 16177, 16172, 16178, 16177), class = "Date")), .Names = c("ID", "created_at"), row.names = c(NA, -6L), class = "data.frame")