How about something like this:
Make a data frame:
In [82]: v = [ ....: (1, "000010101001010101011101010101110101", "aaa"), ....: (0, "111101010100101010101110101010111010", "bb"), ....: (0, "100010110100010101001010101011101010", "ccc"), ....: (1, "000010101001010101011101010101110101", "ddd"), ....: (1, "110100010101001010101011101010111101", "eeee"), ....: ] In [83]: In [83]: df = pandas.DataFrame(v)
We can use fromiter or array to get ndarray :
In [84]: d ="000010101001010101011101010101110101" In [85]: np.fromiter(d, int) # better: np.fromiter(d, int, count=len(d)) Out[85]: array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1]) In [86]: np.array(list(d), int) Out[86]: array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1])
It might be a slippery vector way of doing this, but I would just apply the obvious input function to the values ββand continue my day:
In [87]: df[1] Out[87]: 0 000010101001010101011101010101110101 1 111101010100101010101110101010111010 2 100010110100010101001010101011101010 3 000010101001010101011101010101110101 4 110100010101001010101011101010111101 Name: 1 In [88]: df[1] = df[1].apply(lambda x: np.fromiter(x, int)) # better with count=len(x) In [89]: df Out[89]: 0 1 2 0 1 [0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 aaa 1 0 [1 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 bb 2 0 [1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 ccc 3 1 [0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 ddd 4 1 [1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 eeee In [90]: df[1][0] Out[90]: array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1])