I have a netcdf file containing global sea surface temperatures. Using matplotlib and Basemap, I was able to map this data with the following code:
from netCDF4 import Dataset
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
filename = '/Users/Nick/Desktop/SST/SST.nc'
fh = Dataset(filename, mode='r')
lons = fh.variables['LON'][:]
lats = fh.variables['LAT'][:]
sst = fh.variables['SST'][:].squeeze()
fig = plt.figure()
m = Basemap(projection='merc', llcrnrlon=80.,llcrnrlat=-25.,urcrnrlon=150.,urcrnrlat=25.,lon_0=115., lat_0=0., resolution='l')
lon, lat = np.meshgrid(lons, lats)
xi, yi = m(lon, lat)
cs = m.pcolormesh(xi,yi,sst, vmin=18, vmax=32)
m.drawmapboundary(fill_color='0.3')
m.fillcontinents(color='0.3', lake_color='0.3')
cbar = m.colorbar(cs, location='bottom', pad="10%", ticks=[18., 20., 22., 24., 26., 28., 30., 32.])
cbar.set_label('January SST (' + u'\u00b0' + 'C)')
plt.savefig('SST.png', dpi=300)
The problem is that the data has a very high resolution (9 km grid), which makes the resulting image quite noisy. I would like to put the data in a grid with a lower resolution (like 1 degree), but I'm struggling to figure out how to do this. I implemented the developed solution to try to use the matplotlib griddata function by inserting the code below into my example above, but this led to "ValueError: condition must be the 1st array".
xi, yi = np.meshgrid(lons, lats)
X = np.arange(min(x), max(x), 1)
Y = np.arange(min(y), max(y), 1)
Xi, Yi = np.meshgrid(X, Y)
Z = griddata(xi, yi, z, Xi, Yi)
Python matplotlib, , ( ). !