C ++ generic factory with multiple constructor signatures?

Has anyone ever combined the classic general factory of Andrei Alexandrescu (p. 208 Chapter 8 in “Modern C ++ Design”) with the “feature-rich” features of Boost.TypeErasure ? That is, the flexibility of having several signatures of the authors' functions, which differ in the number and type of parameters (but still have the same return type and are known at compile time).

In other words, how to combine this slightly simplified common Factory:

#include <map>
#include <utility>
#include <stdexcept>

template <class AbstractProduct, typename IdentifierType, typename ProductCreator>
class Factory
{
public:
    bool Register(const IdentifierType& id, ProductCreator creator) {
        return associations_.emplace(id, creator).second;
    }

    bool Unregister(const IdentifierType& id) {
        return associations_.erase(id) == 1;
    }

    template <typename... Arguments>
    AbstractProduct CreateObject(const IdentifierType& id, Arguments&& ... args) {
        auto i = associations_.find(id);
        if (i != associations_.end()) {
            return (i->second)(std::forward<Arguments>(args)...);
        }
        throw std::runtime_error("Creator not found.");
    }

private:
    std::map<IdentifierType, ProductCreator> associations_;
};

with this (incomplete) style of erasing a function type:

#include <boost/type_erasure/any.hpp>
#include <boost/type_erasure/builtin.hpp>
#include <boost/type_erasure/callable.hpp>
#include <boost/mpl/vector.hpp>
#include <boost/variant.hpp>    

template<class... Sig>
using multifunction = any< mpl::vector< copy_constructible<>, typeid_<>, relaxed, callable<Sig>... > >;
using variant_type = boost::make_recursive_variant< void, double, ... >::type;
using function_type = multifunction<AbstractProduct(void), AbstractProduct(double), AbstractProduct(double, double)>;

class variant_handler
{
public:
    void handle(const variant_type& arg) {
        boost::apply_visitor(impl, arg);
    }
    void set_handler(function_type f) {
        impl.f = f;
    }
private:
    struct dispatcher : boost::static_visitor<void>
    {
        template<class T>
        void operator()(const T& t) { f(t); }
        // For a vector, we recursively operate on the elements
        void operator()(const vector_type& v)
        {
            boost::for_each(v, boost::apply_visitor(*this));
        }
        function_type f;
    };
    dispatcher impl;
};

So in the end it can be used like this:

Factory<Arity*, int, ???> factory;
factory.Register(0, boost::bind( boost::factory<Nullary *>() ));
factory.Register(1, boost::bind( boost::factory<Unary *>(), _1 ));
auto x = factory.CreateObject(0);
auto y = factory.CreateObject(1, 0.5);

, . , boost::bind() function_type, SO. , ProductCreator Register - .

, , , factory, , . , , .

++ 11, , , ++ 14 , none ..

!

+3
2

, , Boost.Variant, . , , :

  • .
  • CreateObject .

, const&.

, . , . , , , .

#include <boost/functional/factory.hpp>
#include <boost/function.hpp>
#include <boost/variant.hpp>

#include <map>
#include <stdexcept>
#include <tuple>
#include <type_traits>
#include <utility>
// Just for debugging.
#include <iostream>
#include <typeinfo>
#include <cxxabi.h>

// Tuple manipulation.

template <typename Signature>
struct signature_impl;

template <typename ReturnType, typename... Args>
struct signature_impl<ReturnType(Args...)>
{
    using return_type = ReturnType;
    using param_types = std::tuple<Args...>;
};

template <typename T>
using signature_t = signature_impl<T>;


template <std::size_t... Ints>
struct indices {};

template <std::size_t N, std::size_t... Ints>
struct build_indices : build_indices<N-1, N-1, Ints...> {};

template <std::size_t... Ints>
struct build_indices<0, Ints...> : indices<Ints...> {};

template <typename Tuple>
using make_tuple_indices = build_indices<std::tuple_size<typename std::remove_reference<Tuple>::type>::value>;

// The multiple-signature factory.
template <class AbstractProduct, typename IdentifierType, typename... ProductCreators>
class multifactory
{
    using functions = boost::variant<boost::function<ProductCreators>...>;

    std::map<IdentifierType, functions> associations_;

    template <typename Signature>
    struct dispatch_foo
    {
        template <typename CreateArgs, std::size_t... Indices>
        typename std::enable_if<std::is_convertible<CreateArgs, typename signature_t<Signature>::param_types>::value, AbstractProduct>::type
        static apply(boost::function<Signature> const &f, CreateArgs && t, indices<Indices...>)
        {
            return f(std::get<Indices>(std::forward<CreateArgs>(t))...);
        }

        template <typename CreateArgs, std::size_t... Indices>
        typename std::enable_if<!std::is_convertible<CreateArgs, typename signature_t<Signature>::param_types>::value, AbstractProduct>::type
        static apply(boost::function<Signature> const &, CreateArgs &&, indices<Indices...>)
        {
            return nullptr;
        }
    };

    template <typename... CreateArguments>
    struct dispatcher : boost::static_visitor<AbstractProduct>
    {
        std::tuple<CreateArguments...> args;

        dispatcher(CreateArguments const&... args) : args{std::forward_as_tuple(args...)} {}

        template <typename Signature>
        AbstractProduct operator()(boost::function<Signature> const &f) const
        {
            int status;
            std::cout << "visitor: " << abi::__cxa_demangle(typeid(Signature).name(), nullptr, 0, &status) << "\n";
            return dispatch_foo<Signature>::apply(f, args, make_tuple_indices<std::tuple<CreateArguments...>>{});
        }
    };

public:
    template <typename ProductCreator>
    bool Register(IdentifierType id, ProductCreator &&creator) {
        return associations_.emplace(id, std::forward<ProductCreator>(creator)).second;
    }

    bool Unregister(const IdentifierType& id) {
        return associations_.erase(id) == 1;
    }

    template <typename... Arguments>
    AbstractProduct CreateObject(const IdentifierType& id, Arguments const& ... args) {
        auto i = associations_.find(id);
        if (i != associations_.end()) {
            dispatcher<Arguments...> impl(args...);
            return boost::apply_visitor(impl, i->second);
        }
        throw std::runtime_error("Creator not found.");
    }
};


struct Arity {
    virtual ~Arity() = default;
};

struct Nullary : Arity {};

struct Unary : Arity {
    Unary() {} // Also has nullary ctor.
    Unary(int) {}
};


int main(void)
{
    multifactory<Arity*, int, Arity*(), Arity*(const int&)> factory;
    factory.Register(0, boost::function<Arity*()>( boost::factory<Nullary*>() ));
    factory.Register(1, boost::function<Arity*(const int&)>(boost::factory<Unary*>()) );
    auto a = factory.CreateObject(0);
    assert(a);
    assert(typeid(*a) == typeid(Nullary));
    auto b = factory.CreateObject(1, 2);
    assert(b);
    assert(typeid(*b) == typeid(Unary));
}
0

, , Boost.TypeErasure, ++ 14, . , - factory ( ). , ...

#include <boost/functional/factory.hpp>
#include <boost/function.hpp>
#include <boost/bind.hpp>

#include <cassert>
#include <map>
#include <tuple>
#include <type_traits>
#include <utility>


template <class AbstractProduct, typename IdentifierType, typename... ProductCreators>
class Factory
{
    using AssociativeContainers = std::tuple<std::map<IdentifierType, boost::function<ProductCreators>>...>;
public:
    template <typename Product, typename... Arguments>
    bool Register(const IdentifierType& id, boost::function<Product(Arguments...)> creator) {
        auto &foo = std::get<std::map<IdentifierType, boost::function<AbstractProduct(const Arguments&...)>>>(associations_);
        return foo.emplace(id, creator).second;
    }

    // This function left as an exercise to the reader...
    bool Unregister(const IdentifierType& id) {
        return associations_.erase(id) == 1;
    }

    template <typename... Arguments>
    AbstractProduct CreateObject(const IdentifierType& id, Arguments&& ... args) const {
        auto const &foo = std::get<std::map<IdentifierType, boost::function<AbstractProduct(const Arguments&...)>>>(associations_);
        auto const i = foo.find(id);
        if (i != foo.end()) {
            return (i->second)(std::forward<Arguments...>(args)...);
        }
        throw std::runtime_error("Creator not found.");
    }

private:
    AssociativeContainers associations_;
};


struct Arity {
    virtual ~Arity() = default;
};

struct Nullary : Arity {};

struct Unary : Arity {
    Unary() {}
    Unary(double x) : x(x) {}

    double x;
};


int main(void)
{
    Factory<Arity*, int, Arity*(), Arity*(const double&)> factory;
    factory.Register(0, boost::function<Arity*()>{boost::factory<Nullary*>()} );
    factory.Register(1, boost::function<Arity*(const double&)>{boost::bind(boost::factory<Unary*>(), _1)});
    auto x = factory.CreateObject(1, 2.0);
    assert(typeid(*x) == typeid(Unary));
    x = factory.CreateObject(0);
    assert(typeid(*x) == typeid(Nullary));
}
0

All Articles