Solver of the Rubik's Cube Genetic Algorithm?

Is it possible for a Rubik cube to be effectively solved by genetic algorithms?

What chromosome encoding should be used? How to make crossover and mutation?

I am using this cube model:

#ifndef RUBIKSCUBE_H_INCLUDED
#define RUBIKSCUBE_H_INCLUDED

#include "Common.h"
#include "RubiksSide.h"
#include "RubiksColor.h"
#include "RotationDirection.h"

class RubiksCube {
private:
    int top[3][3];
    int left[3][3];
    int right[3][3];
    int front[3][3];
    int back[3][3];
    int down[3][3];

    int (*sides[6])[3][3];

    std::string result;

    void spinSide(RubiksSide side) {
        static int buffer[ 3 ];

        if (side == TOP) {
            for (int i = 0; i < 3; i++) {
                buffer[i] = left[i][2];
            }
            for (int i = 0; i < 3; i++) {
                left[i][2] = front[0][i];
            }
            for (int i = 0; i < 3; i++) {
                front[0][i] = right[3 - i - 1][0];
            }
            for (int i = 0; i < 3; i++) {
                right[i][0] = back[2][i];
            }
            for (int i = 0; i < 3; i++) {
                back[2][3 - i - 1] = buffer[i];
            }
        } else if (side == LEFT) {
            for (int i = 0; i < 3; i++) {
                buffer[i] = down[i][2];
            }
            for (int i = 0; i < 3; i++) {
                down[3 - i - 1][2] = front[i][0];
            }
            for (int i = 0; i < 3; i++) {
                front[i][0] = top[i][0];
            }
            for (int i = 0; i < 3; i++) {
                top[i][0] = back[i][0];
            }
            for (int i = 0; i < 3; i++) {
                back[3 - i - 1][0] = buffer[i];
            }
        } else if (side == BACK) {
            for (int i = 0; i < 3; i++) {
                buffer[i] = down[0][i];
            }
            for (int i = 0; i < 3; i++) {
                down[0][i] = left[0][i];
            }
            for (int i = 0; i < 3; i++) {
                left[0][i] = top[0][i];
            }
            for (int i = 0; i < 3; i++) {
                top[0][i] = right[0][i];
            }
            for (int i = 0; i < 3; i++) {
                right[0][i] = buffer[i];
            }
        } else if (side == RIGHT) {
            for (int i = 0; i < 3; i++) {
                buffer[i] = down[i][0];
            }
            for (int i = 0; i < 3; i++) {
                down[i][0] = back[3 - i - 1][2];
            }
            for (int i = 0; i < 3; i++) {
                back[i][2] = top[i][2];
            }
            for (int i = 0; i < 3; i++) {
                top[i][2] = front[i][2];
            }
            for (int i = 0; i < 3; i++) {
                front[3 - i - 1][2] = buffer[i];
            }
        } else if (side == FRONT) {
            for (int i = 0; i < 3; i++) {
                buffer[i] = down[2][i];
            }
            for (int i = 0; i < 3; i++) {
                down[2][i] = right[2][i];
            }
            for (int i = 0; i < 3; i++) {
                right[2][i] = top[2][i];
            }
            for (int i = 0; i < 3; i++) {
                top[2][i] = left[2][i];
            }
            for (int i = 0; i < 3; i++)
                left[2][i] = buffer[i];
        } else if (side == DOWN) {
            for (int i = 0; i < 3; i++) {
                buffer[i] = front[2][i];
            }
            for (int i = 0; i < 3; i++) {
                front[2][i] = left[i][0];
            }
            for (int i = 0; i < 3; i++) {
                left[i][0] = back[0][3 - i - 1];
            }
            for (int i = 0; i < 3; i++) {
                back[0][i] = right[i][2];
            }
            for (int i = 0; i < 3; i++) {
                right[3 - i - 1][2] = buffer[i];
            }
        }
    }

    void spinClockwise(int side[3][3], int times, RubiksSide index) {
        static int buffer[3][3];
        static int newarray[3][3];

        if (times == 0) {
            return;
        }

        /*
         * Transponse.
         */
        for (int j = 0; j < 3; j++) {
            for (int i = 0; i < 3; i++) {
                newarray[j][i] = side[i][j];
            }
        }
        /*
         * Rearrange.
         */
        for (int i = 0; i < 3; i++) {
            static int cache = 0;
            cache = newarray[i][0];
            newarray[i][0] = newarray[i][2];
            newarray[i][2] = cache;
        }

        spinSide(index);
        memcpy(buffer, newarray, sizeof(int)*3*3);

        for (int t = 1; t < times; t++) {
            for (int j = 0; j < 3; j++) {
                for (int i = 0; i < 3; i++) {
                    newarray[j][i] = buffer[i][j];
                }
            }
            for (int i = 0; i < 3; i++) {
                static int cache = 0;
                cache = newarray[i][0];
                newarray[i][0] = newarray[i][2];
                newarray[i][2] = cache;
            }

            spinSide(index);

            memcpy(buffer, newarray, sizeof(int)*3*3);
        }

        memcpy(side, buffer, sizeof(int)*3*3);
    }

    double euclidean(const RubiksCube &cube) const {
        double difference = 0.0;

        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                difference += abs(top[i][j]-cube.top[i][j]);
                difference += abs(left[i][j]-cube.left[i][j]);
                difference += abs(right[i][j]-cube.right[i][j]);
                difference += abs(front[i][j]-cube.front[i][j]);
                difference += abs(back[i][j]-cube.back[i][j]);
                difference += abs(down[i][j]-cube.down[i][j]);
            }
        }

        return difference;
    }

    double colors(const RubiksCube &cube) const {
        //TODO Change array with STL maps.
        static const double coefficients[7][7] = {
            {0, 0, 0, 0, 0, 0, 0},
            {0, 1, 2, 2, 2, 2, 4},
            {0, 2, 1, 2, 4, 2, 2},
            {0, 2, 2, 1, 2, 4, 2},
            {0, 2, 4, 2, 1, 2, 2},
            {0, 2, 2, 4, 2, 1, 2},
            {0, 4, 2, 2, 2, 2, 1},
        };

        double difference = 0.0;

        /*
         * Count matches for all sides.
         */
        for(int s=0; s<6; s++) {
            for(int i=0; i<3; i++) {
                for(int j=0; j<3; j++) {
                    /*
                     * If colors are equal calculate distance.
                     */
                    difference += coefficients[(*sides[s])[1][1]][(*sides[s])[i][j]];
                }
            }
        }

        return difference;
    }

    double hausdorff(const RubiksCube &cube) const {
        long ha = 0;
        long hb = 0;
        long result = 0;

        for(int m=0; m<3; m++) {
            for(int n=0; n<3; n++) {
                int distances[] = {0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

                for(int i=0, d=0; i<3; i++) {
                    for(int j=0; j<3; j++) {
                        distances[d++] = abs(top[m][n]-cube.top[i][j]);
                        distances[d++] = abs(left[m][n]-cube.left[i][j]);
                        distances[d++] = abs(right[m][n]-cube.right[i][j]);
                        distances[d++] = abs(front[m][n]-cube.front[i][j]);
                        distances[d++] = abs(back[m][n]-cube.back[i][j]);
                        distances[d++] = abs(down[m][n]-cube.down[i][j]);
                    }
                }

                int min = distances[0];
                for(int d=0; d<54; d++) {
                    if(distances[d] < min) {
                        min = distances[d];
                    }
                }

                if(min > ha) {
                    ha = min;
                }
            }
        }

        for(int m=0; m<3; m++) {
            for(int n=0; n<3; n++) {
                int distances[] = {0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

                for(int i=0, d=0; i<3; i++) {
                    for(int j=0; j<3; j++) {
                        distances[d++] = abs(top[i][j]-cube.top[m][n]);
                        distances[d++] = abs(left[i][j]-cube.left[m][n]);
                        distances[d++] = abs(right[i][j]-cube.right[m][n]);
                        distances[d++] = abs(front[i][j]-cube.front[m][n]);
                        distances[d++] = abs(back[i][j]-cube.back[m][n]);
                        distances[d++] = abs(down[i][j]-cube.down[m][n]);
                    }
                }

                int min = distances[0];
                for(int d=0; d<54; d++) {
                    if(distances[d] < min) {
                        min = distances[d];
                    }
                }

                if(min > hb) {
                    hb = min;
                }
            }
        }

        result = std::max(ha, hb);

        return(result);
    }

    friend std::ostream& operator<< (std::ostream &out, const RubiksCube &cube);

public:
    RubiksCube() {
        reset();

        sides[0] = &top;
        sides[1] = &left;
        sides[2] = &right;
        sides[3] = &front;
        sides[4] = &back;
        sides[5] = &down;
    }

    void reset() {
        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                top[i][j] = GREEN;
                left[i][j] = PURPLE;
                right[i][j] = RED;
                front[i][j] = WHITE;
                back[i][j] = YELLOW;
                down[i][j] = BLUE;
            }
        }
    }

    double compare(const RubiksCube &cube) const {
        return euclidean(cube);
    }

    void callSpin(RubiksSide side, RotationDirection direction, int numberOfTimes) {
        if (numberOfTimes < 0) {
            numberOfTimes = -numberOfTimes;
            if(direction == CLOCKWISE) {
                direction = COUNTERCLOCKWISE;
            } else if(direction == COUNTERCLOCKWISE) {
                direction = CLOCKWISE;
            }
        }

        numberOfTimes %= 4;

        if (direction == CLOCKWISE) {
            if (side == NONE) {
                /*
                * Do nothing.
                */
            }
            if (side == TOP) {
                spinClockwise(top, numberOfTimes, TOP);
            }
            if (side == LEFT) {
                spinClockwise(left, numberOfTimes, LEFT);
            }
            if (side == RIGHT) {
                spinClockwise(right, numberOfTimes, RIGHT);
            }
            if (side == FRONT) {
                spinClockwise(front, numberOfTimes, FRONT);
            }
            if (side == BACK) {
                spinClockwise(back, numberOfTimes, BACK);
            }
            if (side == DOWN) {
                spinClockwise(down, numberOfTimes, DOWN);
            }
        }
    }

    void execute(std::string commands) {
        for(int i=0; i<commands.length(); i++) {
            callSpin((RubiksSide)commands[i], CLOCKWISE, 1);
        }
    }

    std::string shuffle(int numberOfMoves=0) {
        std::string commands = "";

        for(int i=0; i<numberOfMoves; i++) {
            switch(rand()%6) {
            case 0:
                commands+=(char)TOP;
                break;
            case 1:
                commands+=(char)LEFT;
                break;
            case 2:
                commands+=(char)RIGHT;
                break;
            case 3:
                commands+=(char)FRONT;
                break;
            case 4:
                commands+=(char)BACK;
                break;
            case 5:
                commands+=(char)DOWN;
                break;
            }
        }

        execute(commands);

        return commands;
    }

    const std::string& toString() {
        result = "";

        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                result += std::to_string(top[i][j]) + " ";
            }
        }
        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                result += std::to_string(left[i][j]) + " ";
            }
        }
        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                result += std::to_string(right[i][j]) + " ";
            }
        }
        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                result += std::to_string(front[i][j]) + " ";
            }
        }
        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                result += std::to_string(back[i][j]) + " ";
            }
        }
        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                result += std::to_string(down[i][j]) + " ";
            }
        }

        /*
         * Trim spaces.
         */
        result.erase(result.size()-1, 1);
        result += '\0';

        return result;
    }

    void fromString(const char text[]) {
        std::string buffer(text);
        std::istringstream in(buffer);

        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                in >> top[i][j];
            }
        }
        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                in >> left[i][j];
            }
        }
        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                in >> right[i][j];
            }
        }
        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                in >> front[i][j];
            }
        }
        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                in >> back[i][j];
            }
        }
        for(int i=0; i<3; i++) {
            for(int j=0; j<3; j++) {
                in >> down[i][j];
            }
        }
    }
};

std::ostream& operator<< (std::ostream &out, const RubiksCube &cube) {
    for(int i=0; i<3; i++) {
        out << "      ";
        for(int j=0; j<3; j++) {
            out << cube.back[i][j] << " ";
        }
        out << std::endl;
    }

    for(int i=0; i<3; i++) {
        for(int j=0; j<3; j++) {
            out << cube.left[i][j] << " ";
        }
        for(int j=0; j<3; j++) {
            out << cube.top[i][j] << " ";
        }
        for(int j=0; j<3; j++) {
            out << cube.right[i][j] << " ";
        }
        for(int j=0; j<3; j++) {
            out << cube.down[i][j] << " ";
        }
        out << std::endl;
    }

    for(int i=0; i<3; i++) {
        out << "      ";
        for(int j=0; j<3; j++) {
            out << cube.front[i][j] << " ";
        }
        out << std::endl;
    }

    return out;
}

#endif
+4
source share
3 answers

Disclaimer: I'm still not an expert on Rubik's dice, I have never even solved one

The solution to this Rubik's Cube GA

You have a given configuration and you want to use GA to create a sequence of steps that solve this particular configuration.

Performance

, . :

X1+, X1-, X2+, X2-, X3+, X3-,
Y1+, Y1-, Y2+, Y2-, Y3+, Y3-,
Z1+, Z1-, Z2+, Z2-, Z3+, Z3-

.

:

, , . .

. , , , , 20 . 20 , ( ), , , 50, .

. , Rubik. , , -. .

, . - , . , , . , ( , ).

- - GA. , "", 18. - . - , , .

, , . ( ) . .

, , . (.. ), - , , (.. , ), .

, Grammatical Evolution ( , ), . .

"" - , , , , . , ( , , , , ). , . .

( ) , . A *. A * . , A * .

, - ( Rubik, ), , , , , GA. , GA, , , GA Rubik.

+3

, , , . , , .

+1

. , .

https://link.springer.com/chapter/10.1007/978-3-642-12239-2_9

-, ,

, , . Rubiks Cube . , Thistlethwaites. - , Thistlethwaites, , . , , , , .

0
source

All Articles