You can calculate it manually
import numpy as np
mu = 0;
sigma = 1;
x_vals = np.random.rand(10) - 0.5
y_vals = np.exp(-pow(mu - x_vals,2)/(2 * pow(sigma, 2))) / (sigma * np.sqrt(2*np.pi))
print y_vals
Or you can use this function
y_vals2 = sigma * np.random.randn(10) + mu
print y_vals2
source
share