I have a two-dimensional tensor:
a = [[6, 5, 4], [3, 2, 1], [1, 2, 3], [4, 5, 6], [7, 8, 1], [5, 2, 6] ]
I want to extract K 1-D tensors randomly and not repeat . Then, combining them with another two-dimensional tensor b:
b = [5, 2, 6], [3, 2, 1], [6, 5, 4]
I do not find any functions that perform this, so I implement it as below:
rand_var_1 = tf.random_crop(a, size=[1, 3], seed=1)
rand_var_2 = tf.random_crop(a, size=[1, 3], seed=2)
rand_var_3 = tf.random_crop(a, size=[1, 3], seed=3)
rand_var_4 = tf.random_crop(a, size=[1, 3], seed=4)
b = tf.concat(0, [rand_var_1, rand_var_2, rand_var_3, rand_var_4])
b_rs = sess.run(b)
print "b_rs:\n",b_rs
but the result has a repeating 1-D tensor, such as:
bb = [[5, 2, 6], [3, 2, 1], [5, 2, 6]]
Can someone help me fix this?